Estimating likelihoods for spatio-temporal models using importance sampling

被引:7
|
作者
Marion, G
Gibson, G
Renshaw, E
机构
[1] Biomath & Stat Scotland, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Heriot Watt Univ, Dept Stat & Actuarial Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow G1 1XZ, Lanark, Scotland
关键词
likelihood estimation; stochastic integration; importance sampling; Markov chain Monte Carlo; spatio-temporal stochastic process; incomplete observations;
D O I
10.1023/A:1023200324137
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper describes how importance sampling can be applied to estimate likelihoods for spatio-temporal stochastic models of epidemics in plant populations, where observations consist of the set of diseased individuals at two or more distinct times. Likelihood computation is problematic because of the inherent lack of independence of the status of individuals in the population whenever disease transmission is distance-dependent. The methods of this paper overcome this by partitioning the population into a number of sectors and then attempting to take account of this dependence within each sector, while neglecting that between-sectors. Application to both simulated and real epidemic data sets show that the techniques perform well in comparison with existing approaches. Moreover, the results confirm the validity of likelihood estimates obtained elsewhere using Markov chain Monte Carlo methods.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 50 条
  • [21] Matrix Autoregressive Spatio-Temporal Models
    Hsu, Nan-Jung
    Huang, Hsin-Cheng
    Tsay, Ruey S.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (04) : 1143 - 1155
  • [22] Some spatio-temporal models in immunology
    Segel, LA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (11): : 2343 - 2347
  • [23] Models of spatio-temporal dynamics in malaria
    Torres-Sorando, L
    Rodriguez, DJ
    ECOLOGICAL MODELLING, 1997, 104 (2-3) : 231 - 240
  • [24] Modeling Spatio-Temporal Extreme Events Using Graphical Models
    Yu, Hang
    Dauwels, Justin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (05) : 1101 - 1116
  • [25] Inverse Models for Estimating the Initial Condition of Spatio-Temporal Advection-Diffusion Processes
    Liu, Xiao
    Yeo, Kyongmin
    TECHNOMETRICS, 2023, 65 (03) : 432 - 445
  • [26] Bayesian design for sampling anomalous spatio-temporal data
    Buchhorn, Katie
    Mengersen, Kerrie
    Santos-Fernandez, Edgar
    Mcgree, James
    STATISTICS AND COMPUTING, 2025, 35 (03)
  • [27] Trajectory Parsing by Cluster Sampling in Spatio-temporal Graph
    Liu, Xiaobai
    Lin, Liang
    Zhu, Song-Chun
    Jin, Hai
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 739 - +
  • [28] Estimating activity patterns using spatio-temporal data of cell phone networks
    Zahedi, Seyedmostafa
    Shafahi, Yousef
    INTERNATIONAL JOURNAL OF URBAN SCIENCES, 2018, 22 (02) : 162 - 179
  • [29] Estimating spatio-temporal fields through reinforcement learning
    Padrao, Paulo
    Fuentes, Jose
    Bobadilla, Leonardo
    Smith, Ryan N.
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [30] Spatio-Temporal Tensor Sketching via Adaptive Sampling
    Ma, Jing
    Zhang, Qiuchen
    Ho, Joyce C.
    Xiong, Li
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 490 - 506