REACTION-DIFFUSION EQUATIONS WITH SPATIALLY VARIABLE EXPONENTS AND LARGE DIFFUSION

被引:12
|
作者
Simsen, Jacson [1 ]
Simsen, Mariza Stefanello [1 ]
Teixeira Primo, Marcos Roberto [2 ]
机构
[1] Univ Fed Itajuba, Inst Matemat & Comp, BR-37500903 Itajuba, MG, Brazil
[2] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
关键词
Reaction-Diffusion equations; parabolic problems; variable exponents; attractors; upper semicontinuity; EXISTENCE; BEHAVIOR; SYSTEMS;
D O I
10.3934/cpaa.2016.15.495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove continuity of solutions with respect to initial conditions and couple parameters and we prove joint upper semicontinuity of a family of global attractors for the problem {partial derivative u(s)/partial derivative t(t) - div(D-s vertical bar del u(s)vertical bar(ps(x)-2)del u(s)) + vertical bar u(s)vertical bar(ps(x)-2)u(s) = B(u(s)(t)), t > 0, u(s)(0) = u(0s), under homogeneous Neumann boundary conditions, u0(s) epsilon H := L-2(Omega), Omega subset of R-n (n >= 1) is a smooth bounded domain, B : H -> H is a globally Lipschitz map with Lipschitz constant L >= 0, D-s epsilon [1, infinity), p(s)(.) epsilon C((Omega) over bar), (p(s)) over bar :=ess inf p(s) >= p, p(s)(+) :=ess sup P-s <= a, for all s epsilon N, when p(s)(.) -> p in L infinity(Omega) and D-s -> infinity as s -> infinity, with a, p > 2 positive constants.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 50 条