Filling Path Planning and Polygon Operations for Wire Arc Additive Manufacturing Process

被引:15
|
作者
Zhang, Jiansheng [1 ,2 ]
Wang, Qiuyun [1 ]
Xiao, Guiqian [2 ]
Zhou, Jie [1 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[2] Chongqing Jiepin Technol Co Ltd, Chongqing 400000, Peoples R China
关键词
MECHANICAL-PROPERTIES; MICROSTRUCTURE;
D O I
10.1155/2021/6683319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To improve the service life of hot forging die, the additive manufacturing algorithm and additive manufacturing device for die remanufacturing are developed. Firstly, a compound filling algorithm in which the inner zone is filled by linear scanning and the outer contour is filled by offsetting is developed in order to solve the problems encountered in filling path planning for wire arc additive manufacturing (WAAM) like staircase effect at marginal division, degenerated edge at outer contour, programming difficulty, and so forth. Meanwhile, the attitude control algorithm of welding gun is proposed to control the angle between welding gun and welding path so as to improve the welding forming quality. Secondly, the high-temperature and low-temperature wear resistances of Fe-based and Ni-based alloy are tested. The results show that Ni-based alloy has higher high-temperature wear resistance. Finally, a disabled crankshaft hot forging die is selected for application test and the results show that, using the techniques discussed in this paper, welding materials can be saved by more than 50% and machining cost can be saved by more than 60%. In addition, the surface of automatic-repaired die is smooth without oxidation, collapse, and other defects after forging 3000 times, which is much better than that of manual-repaired die.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Wire Arc Additive Manufacturing of Titanium Alloy: Forming Process and Process Control
    Lu T.
    Jing S.
    Nie J.
    Xu T.
    Li C.
    Liu C.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2023, 47 (05): : 618 - 632
  • [42] Wire plus Arc Additive Manufacturing
    Williams, S. W.
    Martina, F.
    Addison, A. C.
    Ding, J.
    Pardal, G.
    Colegrove, P.
    MATERIALS SCIENCE AND TECHNOLOGY, 2016, 32 (07) : 641 - 647
  • [43] Hybridization in wire arc additive manufacturing
    Kapil, Sajan
    Rajput, Atul Singh
    Sarma, Ritam
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2022, 8
  • [44] Hybridization in wire arc additive manufacturing
    Kapil, Sajan
    Rajput, Atul Singh
    Sarma, Ritam
    Frontiers in Mechanical Engineering, 2022, 8
  • [45] Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing
    Ding, Donghong
    Pan, Zengxi
    Cuiuri, Dominic
    Li, Huijun
    van Duin, Stephen
    Larkin, Nathan
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2016, 39 : 32 - 42
  • [46] SAT Solving with Fragmented Hamiltonian Path Constraints for Wire Arc Additive Manufacturing
    Ehlers, Ruediger
    Treutler, Kai
    Wesling, Volker
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, SAT 2020, 2020, 12178 : 492 - 500
  • [47] Standardisation Focus on Process Planning and Operations Management for Additive Manufacturing
    Xiao, Jinhua
    Anwer, Nabil
    Durupt, Alexandre
    Le Duigou, Julien
    Eynard, Benoit
    ADVANCES ON MECHANICS, DESIGN ENGINEERING AND MANUFACTURING, 2017, : 223 - 232
  • [48] Development of a novel TIG hot-wire process for wire and arc additive manufacturing
    Spaniol, E.
    Ungethüm, T.
    Trautmann, M.
    Andrusch, K.
    Hertel, M.
    Füssel, U.
    Rivista Italiana della Saldatura, 2021, 73 (06): : 713 - 731
  • [49] Development of a novel TIG hot-wire process for wire and arc additive manufacturing
    Spaniol, E.
    Ungethum, T.
    Trautmann, M.
    Andrusch, K.
    Hertel, M.
    Fuessel, U.
    WELDING IN THE WORLD, 2020, 64 (08) : 1329 - 1340
  • [50] Development of a novel TIG hot-wire process for wire and arc additive manufacturing
    E. Spaniol
    T. Ungethüm
    M. Trautmann
    K. Andrusch
    M. Hertel
    U. Füssel
    Welding in the World, 2020, 64 : 1329 - 1340