H2O2 Production at Low Overpotentials for Electroenzymatic Halogenation Reactions

被引:40
|
作者
Bormann, Sebastian [1 ]
van Schie, Morten M. C. H. [2 ]
De Almeida, Tiago Pedroso [2 ]
Zhang, Wuyuan [2 ]
Stoeckl, Markus [3 ]
Ulber, Roland [4 ]
Hollmann, Frank [2 ]
Holtmann, Dirk [1 ]
机构
[1] DECHEMA Res Inst, Ind Biotechnol, Theodor Heuss Allee 25, D-60486 Frankfurt, Germany
[2] Delft Univ Technol, Dept Biotechnol, Biocatalysis Grp, Maasweg 9, NL-2629 HZ Delft, Netherlands
[3] DECHEMA Res Inst, Electrochem, Theodor Heuss Allee 25, D-60486 Frankfurt, Germany
[4] Univ Kaiserslautern, Bioproc Engn, Gottlieb Daimler Str 49, D-67663 Kaiserslautern, Germany
关键词
biocatalysis; carbon nanotubes; electrochemistry; enzymes; hydrogen peroxide; HYDROGEN-PEROXIDE; VANADIUM CHLOROPEROXIDASE; OXIDATION; OXYGEN;
D O I
10.1002/cssc.201902326
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Various enzymes utilize hydrogen peroxide as an oxidant. Such "peroxizymes" are potentially very attractive catalysts for a broad range of oxidation reactions. Most peroxizymes, however, are inactivated by an excess of H2O2. The electrochemical reduction of oxygen can be used as an in situ generation method for hydrogen peroxide to drive the peroxizymes at high operational stabilities. Using conventional electrode materials, however, also necessitates significant overpotentials, thereby reducing the energy efficiency of these systems. This study concerns a method to coat a gas-diffusion electrode with oxidized carbon nanotubes (oCNTs), thereby greatly reducing the overpotential needed to perform an electroenzymatic halogenation reaction. In comparison to the unmodified electrode, with the oCNTs-modified electrode the overpotential can be reduced by approximately 100 mV at comparable product formation rates.
引用
收藏
页码:4759 / 4763
页数:5
相关论文
共 50 条
  • [41] PRODUCTION OF POLYHYDRIC ALCOHOLS BY THE REACTION OF DIENES WITH H2O2
    KIRILASH, NN
    DUDNIK, GN
    KARASEV, YZ
    MENYAILO, AT
    POSPELOV, MB
    ELYASHBERG, ME
    KHIMICHESKAYA PROMYSHLENNOST, 1981, (12): : 719 - 720
  • [42] Effect of pH on H2O2 Production in the Radiolysis of Water
    Roth, Olivia
    LaVerne, Jay A.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (05): : 700 - 708
  • [43] Effects and mechanisms of H2O2 on production of dicarboxylic acid
    Jiao, P
    Huang, YM
    Li, SL
    Hua, YT
    Cao, Z
    BIOTECHNOLOGY AND BIOENGINEERING, 2001, 75 (04) : 456 - 462
  • [44] FASTING INCREASES HEPATIC H2O2 PRODUCTION INVIVO
    KERCKAERT, I
    VANDENBRANDEN, C
    ROELS, F
    ARCHIVES INTERNATIONALES DE PHYSIOLOGIE DE BIOCHIMIE ET DE BIOPHYSIQUE, 1982, 90 (03): : B124 - B126
  • [45] THE PRODUCTION OF H2O2 IN AERATED WATER BY FAST NEUTRONS
    EBERT, M
    HOWARDFLANDERS, P
    SHALEK, RJ
    RADIATION RESEARCH, 1955, 3 (02) : 105 - 115
  • [46] Hypoxia and reoxygenation increase H2O2 production in rats
    Hitka, P
    Vízek, M
    Wilhelm, J
    EXPERIMENTAL LUNG RESEARCH, 2003, 29 (08) : 585 - 592
  • [47] Comparative study of the rate of decomposition of H2O2 and of atrazine by Fe(III)/H2O2, Cu(II)/H2O2, Fe(III)/Cu(II)/H2O2
    Gallard, H.
    De Laat, J.
    Legube, B.
    Revue des Sciences de l'Eau, 1999, 12 (04): : 713 - 728
  • [48] KINETICS OF THE REACTIONS OF ATOMIC BROMINE WITH HO2 AND H2O2
    POSEY, J
    SHERWELL, J
    KAUFMAN, M
    CHEMICAL PHYSICS LETTERS, 1981, 77 (03) : 476 - 479
  • [49] Photochemical oxidation of styrene in acetonitrile solution in presence of H2O2, TiO2/H2O2 and ZnO/H2O2
    Lachheb, Hinda
    Guillar, Chantal
    Lassoued, Hayfa
    Haddaji, Marwa
    Rajah, Mariem
    Houas, Ammar
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2017, 346 : 462 - 469
  • [50] Replacement of H2O2 by O2 in Fenton and photo-Fenton reactions
    Utset, B
    Garcia, J
    Casado, J
    Domènech, X
    Peral, J
    CHEMOSPHERE, 2000, 41 (08) : 1187 - 1192