H2O2 Production at Low Overpotentials for Electroenzymatic Halogenation Reactions

被引:40
|
作者
Bormann, Sebastian [1 ]
van Schie, Morten M. C. H. [2 ]
De Almeida, Tiago Pedroso [2 ]
Zhang, Wuyuan [2 ]
Stoeckl, Markus [3 ]
Ulber, Roland [4 ]
Hollmann, Frank [2 ]
Holtmann, Dirk [1 ]
机构
[1] DECHEMA Res Inst, Ind Biotechnol, Theodor Heuss Allee 25, D-60486 Frankfurt, Germany
[2] Delft Univ Technol, Dept Biotechnol, Biocatalysis Grp, Maasweg 9, NL-2629 HZ Delft, Netherlands
[3] DECHEMA Res Inst, Electrochem, Theodor Heuss Allee 25, D-60486 Frankfurt, Germany
[4] Univ Kaiserslautern, Bioproc Engn, Gottlieb Daimler Str 49, D-67663 Kaiserslautern, Germany
关键词
biocatalysis; carbon nanotubes; electrochemistry; enzymes; hydrogen peroxide; HYDROGEN-PEROXIDE; VANADIUM CHLOROPEROXIDASE; OXIDATION; OXYGEN;
D O I
10.1002/cssc.201902326
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Various enzymes utilize hydrogen peroxide as an oxidant. Such "peroxizymes" are potentially very attractive catalysts for a broad range of oxidation reactions. Most peroxizymes, however, are inactivated by an excess of H2O2. The electrochemical reduction of oxygen can be used as an in situ generation method for hydrogen peroxide to drive the peroxizymes at high operational stabilities. Using conventional electrode materials, however, also necessitates significant overpotentials, thereby reducing the energy efficiency of these systems. This study concerns a method to coat a gas-diffusion electrode with oxidized carbon nanotubes (oCNTs), thereby greatly reducing the overpotential needed to perform an electroenzymatic halogenation reaction. In comparison to the unmodified electrode, with the oCNTs-modified electrode the overpotential can be reduced by approximately 100 mV at comparable product formation rates.
引用
收藏
页码:4759 / 4763
页数:5
相关论文
共 50 条
  • [1] H2O2 in CO2:: Sustainable production and green reactions
    Hâncu, D
    Green, J
    Beckman, EJ
    ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (09) : 757 - 764
  • [2] LABORATORY MEASUREMENTS OF H2O2+ PRODUCTION AND LOSS REACTIONS AND IMPLICATIONS FOR MESOSPHERIC H2O2
    LINDINGER, W
    ALBRITTON, DL
    HOWARD, CJ
    FEHSENFELD, FC
    FERGUSON, EE
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1975, 80 (22): : 3277 - 3279
  • [3] PRODUCTION H2O2 ABROAD
    KOSAREVA, VF
    CHESALOVA, VS
    SHISHKINA, AP
    DERBENZEV, YI
    KHIMICHESKAYA PROMYSHLENNOST, 1977, (03): : 229 - 231
  • [4] Separation processes in H2O2 production
    Krajnc, M
    Golob, J
    Golja, A
    Burja, R
    Lozar, M
    Flajs, S
    Grcar, M
    ACTA CHIMICA SLOVENICA, 2001, 48 (04) : 585 - 596
  • [5] PRODUCTION OF H2O2 BY STIMULATED PLATELETS
    DELPRINCIPE, D
    MENICHELLI, A
    DIGIULIO, S
    DEMATTEIS, W
    GIORDANI, M
    SAVINI, T
    MELINO, G
    FINAZZIAGRO, A
    PEDIATRIC RESEARCH, 1988, 24 (02) : 264 - 264
  • [6] MEASUREMENT OF INTRACELLULAR H2O2 PRODUCTION
    JONES, DP
    FEDERATION PROCEEDINGS, 1981, 40 (06) : 1863 - 1863
  • [7] Models reactions of haloperoxidases.: Halogenation of organic substrates by RuO4-/X-/H2O2
    Tong, TY
    JOURNAL OF INORGANIC BIOCHEMISTRY, 2003, 96 (01) : 239 - 239
  • [8] Modulation of H2O2 production in vitro by low level magnetic fields
    Martino, Carlos F.
    Castello, Pablo
    FASEB JOURNAL, 2012, 26
  • [9] Catalytic properties of Cr-containing heteropolytungstates in H2O2 participated reactions: H2O2 decomposition and oxidation of unsaturated hydrocarbons with H2O2
    Kuznetsova, NI
    Kuznetsova, LI
    Likholobov, VA
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 1996, 108 (03) : 135 - 143
  • [10] LOW-INTENSITY RADIOLYSIS STUDY OF FREE-RADICAL REACTIONS IN CLOUDWATER - H2O2 PRODUCTION AND DESTRUCTION
    WEINSTEINLLOYD, J
    SCHWARTZ, SE
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1991, 25 (04) : 791 - 800