Analytical perturbative approach to periodic orbits in the homogeneous quartic oscillator potential

被引:14
|
作者
Brack, M [1 ]
Fedotkin, SN
Magner, AG
Mehta, M
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[2] Inst Nucl Res, UA-252028 Kiev, Ukraine
[3] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
来源
关键词
D O I
10.1088/0305-4470/36/4/317
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an analytical calculation of periodic orbits in the homogeneous quartic oscillator potential. Exploiting the properties of the periodic Lame functions that describe the orbits bifurcated from the fundamental linear orbit in the vicinity of the bifurcation points, we use perturbation theory to obtain their evolution away from the bifurcation points. As an application, we derive an analytical semiclassical trace formula for the density of states in the separable case, using a uniform approximation for the pitchfork bifurcations occurring there, which allows for full semiclassical quantization. For the non-integrable situations, we show that the uniform contribution of the bifurcating period-one orbits to the coarse-grained density of states competes with that of the shortest isolated orbits, but decreases with increasing chaoticity parameter alpha.
引用
收藏
页码:1095 / 1110
页数:16
相关论文
共 50 条
  • [1] FAMILIES OF PERIODIC-ORBITS IN A QUARTIC POTENTIAL
    CARANICOLAS, N
    VARVOGLIS, H
    ASTRONOMY & ASTROPHYSICS, 1984, 141 (02) : 383 - 388
  • [2] Selection rules for periodic orbits and scaling laws for a driven damped quartic oscillator
    Bartuccelli, Michele V.
    Berretti, Alberto
    Deane, Jonathan H. B.
    Gentile, Guido
    Gourley, Stephen A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) : 1966 - 1988
  • [3] Classical damped quartic anharmonic oscillator: a simple analytical approach
    Mandal, S
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2003, 38 (07) : 1095 - 1101
  • [4] Periodic solution of the parametric Gaylord's oscillator with a non-perturbative approach
    El-dib, Yusry O.
    Elgazery, Nasser S.
    EPL, 2022, 140 (05)
  • [5] PT-symmetric quartic anharmonic oscillator and posit ion-dependent mass in a perturbative approach
    Bagchi, B.
    Banerjee, A.
    Quesne, C.
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (09) : 893 - 898
  • [6] The quartic oscillator: a non-perturbative study by continuous unitary transformations
    Dusuel, S
    Uhrig, GS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (39): : 9275 - 9294
  • [7] A perturbative treatment of a generalized PT-symmetric quartic anharmonic oscillator
    Banerjee, A
    MODERN PHYSICS LETTERS A, 2005, 20 (39) : 3013 - 3023
  • [8] Existence and Stability of Periodic Orbits for a Hamiltonian System with Homogeneous Potential of Degree Five
    Uribe, Marco
    Quispe, Margarita
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2023, 31 (04) : 743 - 765
  • [9] Existence and Stability of Periodic Orbits for a Hamiltonian System with Homogeneous Potential of Degree Five
    Marco Uribe
    Margarita Quispe
    Differential Equations and Dynamical Systems, 2023, 31 : 743 - 765
  • [10] Analytical solution for quantum quartic oscillator in phase space
    Martins, A. X.
    Filho, T. M. R.
    Amorim, R. G. G.
    Paiva, R. A. S.
    Petronilo, G.
    Ulhoa, S. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (20):