The quartic oscillator: a non-perturbative study by continuous unitary transformations

被引:27
|
作者
Dusuel, S
Uhrig, GS
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] Ecole Normale Super Lyon, CNRS, UMR 5672, Phys Lab, F-69364 Lyon, France
来源
关键词
D O I
10.1088/0305-4470/37/39/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum quartic oscillator is investigated in order to test the many-body technique of the continuous unitary transformations. The quartic oscillator is sufficiently simple to allow a detailed study and comparison of various approximation schemes. Due to its simplicity, it can be used as a pedagogical introduction to the unitary transformations. Both the spectrum and the spectral weights are discussed.
引用
收藏
页码:9275 / 9294
页数:20
相关论文
共 50 条
  • [1] Non-perturbative flow equations from continuous unitary transformations
    Kriel, JN
    Morozov, AY
    Scholtz, FG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (01): : 205 - 226
  • [2] Enhanced perturbative continuous unitary transformations
    Krull, H.
    Drescher, N. A.
    Uhrig, G. S.
    PHYSICAL REVIEW B, 2012, 86 (12)
  • [3] Non-perturbative energy expressions for the generalized anharmonic oscillator
    Sharma, L.K.
    Fiase, J.O.
    European Journal of Physics, 2000, 21 (02) : 167 - 174
  • [4] Non-perturbative Quantum Mechanics from Non-perturbative Strings
    Codesido, Santiago
    Marino, Marcos
    Schiappa, Ricardo
    ANNALES HENRI POINCARE, 2019, 20 (02): : 543 - 603
  • [5] Non-perturbative Quantum Mechanics from Non-perturbative Strings
    Santiago Codesido
    Marcos Mariño
    Ricardo Schiappa
    Annales Henri Poincaré, 2019, 20 : 543 - 603
  • [6] The periodic property of Gaylord's oscillator with a non-perturbative method
    El-Dib, Yusry O.
    ARCHIVE OF APPLIED MECHANICS, 2022, 92 (11) : 3067 - 3075
  • [7] The periodic property of Gaylord’s oscillator with a non-perturbative method
    Yusry O. El-Dib
    Archive of Applied Mechanics, 2022, 92 : 3067 - 3075
  • [8] Non-Perturbative Localization with Quasiperiodic Potential in Continuous Time
    Ilia Binder
    Damir Kinzebulatov
    Mircea Voda
    Communications in Mathematical Physics, 2017, 351 : 1149 - 1175
  • [9] Non-Perturbative Localization with Quasiperiodic Potential in Continuous Time
    Binder, Ilia
    Kinzebulatov, Damir
    Voda, Mircea
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 351 (03) : 1149 - 1175
  • [10] Perturbative and non-perturbative lattice calculations for the study of parton distributions
    Capitani, S
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 116 : 115 - 120