The quartic oscillator: a non-perturbative study by continuous unitary transformations

被引:27
|
作者
Dusuel, S
Uhrig, GS
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] Ecole Normale Super Lyon, CNRS, UMR 5672, Phys Lab, F-69364 Lyon, France
来源
关键词
D O I
10.1088/0305-4470/37/39/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum quartic oscillator is investigated in order to test the many-body technique of the continuous unitary transformations. The quartic oscillator is sufficiently simple to allow a detailed study and comparison of various approximation schemes. Due to its simplicity, it can be used as a pedagogical introduction to the unitary transformations. Both the spectrum and the spectral weights are discussed.
引用
收藏
页码:9275 / 9294
页数:20
相关论文
共 50 条
  • [21] Non-perturbative orientifolds
    Kakushadze, Z
    PHYSICS LETTERS B, 1999, 455 (1-4) : 120 - 128
  • [22] Non-perturbative dynamics
    Dalley, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 : 53 - 64
  • [23] A non-perturbative study of massive gauge theories
    Della Morte, M.
    Hernandez, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [24] Is the axial anomaly really determined in a continuous non-perturbative regularization?
    J.L. Jacquot
    The European Physical Journal C - Particles and Fields, 2002, 23 : 349 - 355
  • [25] Is the axial anomaly really determined in a continuous non-perturbative regularization?
    Jacquot, JL
    EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (02): : 349 - 355
  • [26] A non-perturbative study of massive gauge theories
    M. Della Morte
    P. Hernández
    Journal of High Energy Physics, 2013
  • [27] Non-perturbative hydrodynamic limits: A case study
    Karlin, I. V.
    Chikatamarla, S. S.
    Kooshkbaghi, M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 403 : 189 - 194
  • [28] Non-perturbative to perturbative QCD via the FFBRST
    Haresh Raval
    Bhabani Prasad Mandal
    The European Physical Journal C, 2018, 78
  • [29] Perturbative and non-perturbative modes in START and MAST
    Gryaznevich, M. P.
    Sharapov, S. E.
    NUCLEAR FUSION, 2006, 46 (10) : S942 - S950
  • [30] Separating perturbative and non-perturbative contributions to the plaquette
    Horsley, R
    Rakow, PEL
    Schierholz, G
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 870 - 872