The Approximate Expression of Power Flow Jacobian Matrix and Analysis

被引:0
|
作者
Xu, Zhiyou [1 ]
Jia, Qingquan [2 ]
Li, Liu [1 ]
机构
[1] Shengyang Inst Engn, Dept Elect Engn, Shenyang 110136, Peoples R China
[2] Yanshan Univ, QinHuangDao 066004, Peoples R China
关键词
power system; power flow Jacobian matrix; (skew-)symmetric matrix; block Gerschgorin theorem; SVD(singular value decomposition);
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In order to evaluate the approximate expression of power flow Jacobian matrix, some indices are established according to the relation of singular values between the symmetric part and skew-symmetric part of power flow Jacobian matrix. The comparisons of indices not only include the comparisons of 2-norm and F-norm, but also include the comparisons of the weighted sum of singular values these indices can also be applicable to complex matrix. The simulations on IEEE30 system show the effectiveness.
引用
收藏
页码:2336 / +
页数:2
相关论文
共 50 条
  • [21] Static Voltage Stability Analysis Based on Power Flow Jacobian Determinant
    Xu C.
    Wang Z.
    Dong S.
    Tang K.
    Song Y.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42 (06): : 2096 - 2108
  • [22] State-in-mode analysis of the power flow Jacobian for static voltage stability
    Song, Yue
    Hill, David J.
    Liu, Tao
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 105 : 671 - 678
  • [23] A New Expression to Construct Jacobian Matrix of Parallel Mechanism
    Xin, Hongbing
    Huang, Qiang
    Duan, Xingguang
    Yu, Yueqing
    INTELLIGENT ROBOTICS AND APPLICATIONS, PT I, PROCEEDINGS, 2008, 5314 : 111 - +
  • [24] Negative Reactance Impacts on the Eigenvalues of the Jacobian Matrix in Power Flow and Type-1 Low-Voltage Power-Flow Solutions
    Ding, Tao
    Li, Cheng
    Yang, Yongheng
    Bo, Rui
    Blaabjerg, Frede
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (05) : 3471 - 3481
  • [25] Negative Reactance Impacts on the Eigenvalues of the Jacobian Matrix in Power Flow and Type-1 Low-Voltage Power-Flow Solutions
    Ding, Tao
    Li, Cheng
    Yang, Yongheng
    Bo, Rui
    Blaabjerg, Frede
    IEEE Transactions on Power Systems, 2017, 32 (05): : 3471 - 3481
  • [26] Introducing a Concise Formulation of the Jacobian Matrix for Newton-Raphson Power Flow Solution in the Engineering Curriculum
    Conlin, Elijah
    Dahal, Niraj
    Rovnyak, Steven M.
    Rovnyak, James L.
    2021 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2021,
  • [27] A Novel AC-DC Decoupled Power Flow Calculation Method Based on the Augmented Jacobian Matrix
    Wang J.
    Ai X.
    Wang K.
    Li R.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2018, 33 (06): : 1382 - 1389
  • [28] Parametric Reduction of Jacobian Matrix for Fault Analysis
    Kolka, Zdenek
    Biolkova, Viera
    Kincl, Zdenek
    Biolek, Dalibor
    2010 INTERNATIONAL CONFERENCE ON MICROELECTRONICS, 2010, : 503 - 506
  • [29] Approximate Probabilistic Power Flow
    Zuluaga, Carlos D.
    Alvarez, Mauricio A.
    DATA ANALYTICS FOR RENEWABLE ENERGY INTEGRATION (DARE 2016), 2017, 10097 : 43 - 53
  • [30] IMPROVED NEWTON-RAPHSON METHOD WITH SIMPLIFIED JACOBIAN MATRIX AND OPTIMIZED ITERATION RATE FOR POWER FLOW CALCULATION OF POWER SYSTEM
    Cui, Jiadong
    Zhao, Gan
    Qin, Huibin
    Hua, Yongzhu
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2024, 25 (02): : 147 - 156