On a heat conduction problem by Myshkis

被引:7
|
作者
Chen, YMJ
Chow, YS [1 ]
Hsieh, J
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[2] Tamkang Univ, Dept Math, Tamsui 25137, Taipei, Taiwan
关键词
difference equation; heat equation; asymptotic behavior; recurrent relation;
D O I
10.1080/10236190008808230
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let tau(1) = 1, tau(2), tau(3), ... be recurrently defined by Sigma(j=1)(n)(Sigma(s=j)(n)tau s)(-1/2) = 1 for n = 2, 3, ... The sequence {tau(n)} appeared in a heat conduction problem studied by Myshkis (J. Differ. Equations Appl. 3, 1997, 89-91), He proposed as an open problem the asymptotic expression for tau(n). It is shown in this paper that tau(n) is increasing and lim(n) tau(n)/n = pi(2)/2. AMS Subject Classification: 39A10, 35K05, 93B52.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 50 条
  • [41] AN EIGENFUNCTION SOLUTION OF A PROBLEM IN HEAT CONDUCTION
    GIERE, AC
    AMERICAN JOURNAL OF PHYSICS, 1968, 36 (11P1) : 994 - &
  • [42] An inverse heat conduction problem with heat flux measurements
    Loulou, Tahar
    Scott, Elaine P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (11) : 1587 - 1616
  • [43] STABLE APPROXIMATION OF THE HEAT FLUX IN AN INVERSE HEAT CONDUCTION PROBLEM
    Alem, Leila
    Chorfi, Lahcene
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (03): : 1025 - 1037
  • [44] The determination of two heat sources in an inverse heat conduction problem
    Yang, CY
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (02) : 345 - 356
  • [45] On a criterion of solvability of the inverse problem of heat conduction
    Kal'menov, Tynysbek S.
    Shaldanbaev, Amir S.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2010, 18 (05): : 471 - 492
  • [46] THE INVERSE STATIONARY HEAT CONDUCTION PROBLEM FOR A CUBOID
    Yacenko, Konstantin M.
    Rakov, Yri Y.
    Slyusarskiy, Konstantin V.
    FOURTH INTERNATIONAL YOUTH FORUM SMART GRIDS 2016, 2017, 91
  • [47] THE STEFAN PROBLEM IN NONLINEAR HEAT-CONDUCTION
    HILL, JM
    HART, VG
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1986, 37 (02): : 206 - 229
  • [48] On a control problem for memory kernels in heat conduction
    Unger, F.
    Wolfersdorf, L.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, 75 (05):
  • [49] Constructing the fundamental solution to a problem of heat conduction
    Kosmakova, M. T.
    Tanin, A. O.
    Tuleutaeva, Zh M.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 97 (01): : 68 - 78
  • [50] Shakedown Analysis Combined With the Problem of Heat Conduction
    Simon, Jaan-Willem
    Chen, Min
    Weichert, Dieter
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2012, 134 (02):