Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae

被引:13
|
作者
Jiang, Wei [1 ,2 ]
Li, Chao [3 ]
Li, Yanjun [4 ,5 ]
Peng, Huadong [1 ,2 ]
机构
[1] Monash Univ, Dept Chem & Biol Engn, Clayton, Vic 3800, Australia
[2] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DK-2800 Lyngby, Denmark
[3] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200234, Peoples R China
[4] Tianjin Univ Sci & Technol, Coll Biotechnol, Tianjin 300457, Peoples R China
[5] Tianjin Univ Sci & Technol, Key Lab Ind Fermentat Microbiol, Minist Educ, Tianjin 300457, Peoples R China
关键词
metabolic engineering; synthetic biology; yeast; triacylglycerol; cellular physiology; fatty acid; MULTIPARAMETER FLOW-CYTOMETRY; FATTY-ACID BIOSYNTHESIS; BETA-OXIDATION CYCLE; YARROWIA-LIPOLYTICA; TRIACYLGLYCEROL ACCUMULATION; OLEAGINOUS YEAST; RICINOLEIC ACID; DIACYLGLYCEROL ACYLTRANSFERASE; MEMBRANE-FLUIDITY; ESCHERICHIA-COLI;
D O I
10.3390/jof8050427
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Microbial lipids have been a hot topic in the field of metabolic engineering and synthetic biology due to their increased market and important applications in biofuels, oleochemicals, cosmetics, etc. This review first compares the popular hosts for lipid production and explains the four modules for lipid synthesis in yeast, including the fatty acid biosynthesis module, lipid accumulation module, lipid sequestration module, and fatty acid modification module. This is followed by a summary of metabolic engineering strategies that could be used for enhancing each module for lipid production. In addition, the efforts being invested in improving the production of value-added fatty acids in engineered yeast, such as cyclopropane fatty acid, ricinoleic acid, gamma linoleic acid, EPA, and DHA, are included. A discussion is further made on the potential relationships between lipid pathway engineering and consequential changes in cellular physiological properties, such as cell membrane integrity, intracellular reactive oxygen species level, and mitochondrial membrane potential. Finally, with the rapid development of synthetic biology tools, such as CRISPR genome editing tools and machine learning models, this review proposes some future trends that could be employed to engineer yeast with enhanced intracellular lipid production while not compromising much of its cellular health.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Multiple metabolic engineering of Saccharomyces cerevisiae for the production of lycopene
    Liu, Jiaheng
    Song, Minxia
    Xu, Xianhao
    Wu, Yaokang
    Liu, Yanfeng
    Du, Guocheng
    Li, Jianghua
    Liu, Long
    Lv, Xueqin
    FOOD BIOENGINEERING, 2024,
  • [32] Metabolic engineering of Saccharomyces cerevisiae for the production of isoprenoids.
    Paradise, EM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U222 - U222
  • [33] Metabolic engineering of Saccharomyces cerevisiae for enhanced production of acetoin
    Bae, Sang-Jeong
    Kim, Sujin
    Hahn, Ji-Sook
    YEAST, 2015, 32 : S146 - S146
  • [34] Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme
    Lee, Hyun-Jae
    Shin, Dong Joo
    Nho, Soo Bin
    Lee, Ki Won
    Kim, Sun-Ki
    BIOTECHNOLOGY JOURNAL, 2024, 19 (10)
  • [35] Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae
    Guan, Ruobing
    Wang, Mengge
    Guan, Zhonghua
    Jin, Cheng-Yun
    Lin, Wei
    Ji, Xiao-Jun
    Wei, Yongjun
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [36] Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    Curran, Kathleen A.
    Leavitt, Johnm.
    Karim, AshtyS.
    Alper, Hal S.
    METABOLIC ENGINEERING, 2013, 15 : 55 - 66
  • [37] Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production
    John Blazeck
    Jarrett Miller
    Anny Pan
    Jon Gengler
    Clinton Holden
    Mariam Jamoussi
    Hal S. Alper
    Applied Microbiology and Biotechnology, 2014, 98 : 8155 - 8164
  • [38] Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production
    Blazeck, John
    Miller, Jarrett
    Pan, Anny
    Gengler, Jon
    Holden, Clinton
    Jamoussi, Mariam
    Alper, Hal S.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (19) : 8155 - 8164
  • [39] Metabolic engineering of succinic acid production in Saccharomyces cerevisiae
    Cimini, D
    Patil, KR
    Lettier, G
    Schiraldi, C
    Nielsen, J
    JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S118 - S118
  • [40] Metabolic engineering of Saccharomyces cerevisiae for enhanced taxadiene production
    Karaca, Hulya
    Kaya, Murat
    Kapkac, Handan Acelya
    Levent, Serkan
    Ozkay, Yusuf
    Ozan, Secil Deniz
    Nielsen, Jens
    Krivoruchko, Anastasia
    MICROBIAL CELL FACTORIES, 2024, 23 (01)