Singularity Analysis of a Fixator by Closest Points Approach

被引:0
|
作者
Akcali, I. D. [1 ]
Avsar, E. [2 ]
Durmaz, A. [1 ]
Sagdic, I. [1 ]
Aydin, A. [2 ]
Un, M. K. [2 ]
Mutlu, H. [3 ]
Ibrikci, T. [2 ]
Ozkan, C. [4 ]
Bicer, O. S. [4 ]
机构
[1] Cukurova Univ, MACTIMARUM Ars & Uyg Mrkz, Adana, Turkey
[2] Cukurova Univ, Elekt Elekt Muhendisligi Bolumu, Adana, Turkey
[3] Mersin Univ, Makina Muhendislkigi Bolumu, Yenisehir Mersin, Turkey
[4] Cukurova Univ, Ortopedi & Travmatoloji Anabilim Dali, Adana, Turkey
关键词
external fixator; singularity; orthopaedics;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
External fixators are robotic devices widely used in orthopaedics. While bringing the bone fragments to a desired position, these devices should not present any threat to the patient health. One of the threat causes is singularity. In a singular position, stable structure of the fixator is lost and its top and bottom rings may move independently. In this work, singularity analysis is performed with a geometric method, closest points approach. It has been shown that results of this approach are consistent with the other singularity analysis methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Closest Approach in Universal Variables
    M. A. Sharaf
    Amr A. Sharaf
    Celestial Mechanics and Dynamical Astronomy, 1997, 69 : 331 - 346
  • [32] ON THE USE OF ONE POINT AND 2 POINTS SINGULARITY ELEMENTS IN THE ANALYSIS OF KINKED CRACKS
    DUTTA, BK
    MAITI, SK
    KAKODKAR, A
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1990, 29 (07) : 1487 - 1499
  • [33] EROS CLOSEST APPROACH TO EARTH
    MEEUS, J
    SKY AND TELESCOPE, 1974, 48 (04): : 221 - 223
  • [34] Singularity analysis and bilinear approach to some Bogoyavlensky equations
    Carstea, A. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (03)
  • [35] Medical image registration using modified iterative closest points
    Pan, Mei-sen
    Tang, Jing-tian
    Rong, Qiu-sheng
    Zhang, Fen
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (08) : 1150 - 1166
  • [36] Locating facilities by minimax relative to closest points of demand areas
    Brimberg, J
    Wesolowsky, GO
    COMPUTERS & OPERATIONS RESEARCH, 2002, 29 (06) : 625 - 636
  • [37] CLOSEST PAIR OF N-RANDOM POINTS ON THE SURFACE OF A SPHERE
    MORAN, PAP
    BIOMETRIKA, 1979, 66 (01) : 158 - 162
  • [38] On lines and planes of closest fit to systems of points in space.
    Pearson, Karl
    PHILOSOPHICAL MAGAZINE, 1901, 2 (7-12) : 559 - 572
  • [39] SINGULARITY REMOVABILITY AT BRANCH POINTS FOR WILLMORE SURFACES
    Bernard, Yann
    Riviere, Tristan
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 265 (02) : 257 - 311
  • [40] An Effective Approach of Points-To Analysis
    Zhang Yuping
    Deng Zhaori
    Zhang Xiaoning
    Ma Yan
    PROCEEDINGS OF THE 2015 INTERNATIONAL SYMPOSIUM ON COMPUTERS & INFORMATICS, 2015, 13 : 2038 - 2045