Singularity Analysis of a Fixator by Closest Points Approach

被引:0
|
作者
Akcali, I. D. [1 ]
Avsar, E. [2 ]
Durmaz, A. [1 ]
Sagdic, I. [1 ]
Aydin, A. [2 ]
Un, M. K. [2 ]
Mutlu, H. [3 ]
Ibrikci, T. [2 ]
Ozkan, C. [4 ]
Bicer, O. S. [4 ]
机构
[1] Cukurova Univ, MACTIMARUM Ars & Uyg Mrkz, Adana, Turkey
[2] Cukurova Univ, Elekt Elekt Muhendisligi Bolumu, Adana, Turkey
[3] Mersin Univ, Makina Muhendislkigi Bolumu, Yenisehir Mersin, Turkey
[4] Cukurova Univ, Ortopedi & Travmatoloji Anabilim Dali, Adana, Turkey
关键词
external fixator; singularity; orthopaedics;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
External fixators are robotic devices widely used in orthopaedics. While bringing the bone fragments to a desired position, these devices should not present any threat to the patient health. One of the threat causes is singularity. In a singular position, stable structure of the fixator is lost and its top and bottom rings may move independently. In this work, singularity analysis is performed with a geometric method, closest points approach. It has been shown that results of this approach are consistent with the other singularity analysis methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Locating the Closest Singularity in a Polynomial Homotopy
    Verschelde, Jan
    Viswanathan, Kylash
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2022), 2022, 13366 : 333 - 352
  • [2] POINTS OF SINGULARITY
    Shalack, Vladimir
    EPISTEMOLOGY & PHILOSOPHY OF SCIENCE-EPISTEMOLOGIYA I FILOSOFIYA NAUKI, 2013, 35 (01): : 95 - 97
  • [3] On the circle closest to a set of points
    Drezner, Z
    Steiner, S
    Wesolowsky, GO
    COMPUTERS & OPERATIONS RESEARCH, 2002, 29 (06) : 637 - 650
  • [4] Computing closest points for segments
    Bespamyatnikh, S
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2003, 13 (05) : 419 - 438
  • [5] Verification of Closest Pair of Points Algorithms
    Rau, Martin
    Nipkow, Tobias
    AUTOMATED REASONING, PT II, 2020, 12167 : 341 - 357
  • [6] EUCLIDEAN SKELETONS USING CLOSEST POINTS
    Luo, Songting
    Guibas, Leonidas J.
    Zhao, Hong-Kai
    INVERSE PROBLEMS AND IMAGING, 2011, 5 (01) : 95 - 113
  • [7] Algorithms for Computing Closest Points for Segments
    Wang, Haitao
    41ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, STACS 2024, 2024, 289
  • [8] On an approximate minimax circle closest to a set of points
    Gass, SI
    Witzgall, C
    COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (04) : 637 - 643
  • [9] The "All-Pairs closest points" problem
    Mahoney, WR
    DR DOBBS JOURNAL, 2003, 28 (01): : 48 - +
  • [10] An Improved Algorithm for Finding the Closest Pair of Points
    Qi Ge
    Hai-Tao Wang
    Hong Zhu
    Journal of Computer Science and Technology, 2006, 21 : 27 - 31