Diophantine equations in separated variables and lacunary polynomials

被引:4
|
作者
Kreso, Dijana [1 ,2 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Steyrergasse 30-II, A-8010 Graz, Austria
[2] Univ Salzburg, Dept Math, Hellbrunnerstr 34-I, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Diophantine equations; lacunary polynomials; polynomial decomposition; CONJECTURE; FIELDS;
D O I
10.1142/S179304211750110X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Diophantine equations of type f(x) = g(y), where f and g are lacunary polynomials. According to a well-known finiteness criterion, for a number field K and nonconstant f, g is an element of K[x], the equation f(x) = g(y) has infinitely many solutions in S-integers x, y only if f and g are representable as a functional composition of lower degree polynomials in a certain prescribed way. The behavior of lacunary polynomials with respect to functional composition is a topic of independent interest, and has been studied by several authors. In this paper, we utilize known results on the latter topic, and develop new ones, in relation to Diophantine applications.
引用
收藏
页码:2055 / 2074
页数:20
相关论文
共 50 条
  • [1] Diophantine equations in separated variables
    Dijana Kreso
    Robert F. Tichy
    Periodica Mathematica Hungarica, 2018, 76 : 47 - 67
  • [2] Diophantine equations in separated variables
    Kreso, Dijana
    Tichy, Robert F.
    PERIODICA MATHEMATICA HUNGARICA, 2018, 76 (01) : 47 - 67
  • [3] Combinatorial Diophantine equations and a refinement of a theorem on separated variables equations
    Bilu, Yuri F.
    Fuchs, Clemens
    Luca, Florian
    Pinter, Akos
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (01): : 219 - 254
  • [4] Diophantine approximation and zeros of the lacunary polynomials
    Bernik, VI
    Morozova, IM
    DOKLADY AKADEMII NAUK BELARUSI, 1998, 42 (06): : 5 - 8
  • [5] Diophantine equations in separated variables and polynomial power sums
    Clemens Fuchs
    Sebastian Heintze
    Monatshefte für Mathematik, 2021, 196 : 59 - 65
  • [6] Diophantine equations in separated variables and polynomial power sums
    Fuchs, Clemens
    Heintze, Sebastian
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (01): : 59 - 65
  • [7] IRREDUCIBILITY OF POLYNOMIALS AND DIOPHANTINE EQUATIONS
    Woo, Sung Sik
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (01) : 101 - 112
  • [8] Diophantine equations with Bernoulli polynomials
    Kulkarni, M
    Sury, B
    ACTA ARITHMETICA, 2005, 116 (01) : 25 - 34
  • [9] Diophantine equations with Euler polynomials
    Kreso, Dijana
    Rakaczki, Csaba
    ACTA ARITHMETICA, 2013, 161 (03) : 267 - 281
  • [10] Diophantine equations and Bernoulli polynomials
    Bilu, YF
    Brindza, B
    Kirschenhofer, P
    Pintér, A
    Tichy, RF
    Schinzel, A
    COMPOSITIO MATHEMATICA, 2002, 131 (02) : 173 - 188