PYSAT: Python']Python Satellite Data Analysis Toolkit

被引:16
|
作者
Stoneback, R. A. [1 ]
Burrell, A. G. [1 ]
Klenzing, J. [2 ]
Depew, M. D. [1 ]
机构
[1] Univ Texas Dallas, Phys Dept, WB Hanson Ctr Space Sci, Richardson, TX 75083 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
基金
美国国家科学基金会;
关键词
SUPERDARN; FUTURE;
D O I
10.1029/2018JA025297
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A common problem in space science data analysis is combining complementary data sources that are provided and analyzed in different formats and programming languages. The Python Satellite Data Analysis Toolkit (pysat) addresses this issue by providing an open source toolkit that implements the general process of space science data analysis, from beginning to end, in an instrument-independent manner. This toolkit uses an Instrument object that enables systematic analysis of science data from a variety of platforms within a single interface. Basic functions such as downloading, loading, and cleaning are included for all supported instruments. Common analysis routines are also included, which are instrument and data source independent. A nanokernel is used to provide instrument independence, it is attached to the Instrument object and mediates the systematic and arbitrary modification of loaded data. Pysat uses the nanokernel to improve the rigor of time series analysis, support on-the-fly orbit determination, and cleanly span file breaks. Pysat's functions and higher-level scientific analysis features are validated through the use of unit testing. Further adoption by the community provides a set of scientific results produced by a common core, constituting a distributed heritage that supports the validity of the underlying processing and scientific output. These features are used to demonstrate consistency between derived electron density profiles and measured ion drifts, particularly downward ion drifts in the afternoon hours during extreme solar minimum. Pysat builds upon open source Python software that is freely available and encourages community-driven development.
引用
收藏
页码:5271 / 5283
页数:13
相关论文
共 50 条
  • [41] reciprocalspaceship: a Python']Python library for crystallographic data analysis
    Greisman, Jack B.
    Dalton, Kevin M.
    Hekstra, Doeke R.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 : 1521 - 1529
  • [42] FDT: A python']python toolkit for fake image and video detection
    Raj, Surbhi
    Mathew, Jimson
    Mondal, Arijit
    SOFTWAREX, 2023, 22
  • [43] Implementation of a GNU Radio and Python']Python FMCW Radar Toolkit
    Mathumo, Themba W.
    Swart, Theo G.
    Focke, Richard W.
    2017 IEEE AFRICON, 2017, : 585 - 590
  • [44] aeon: a Python']Python Toolkit for Learning from Time Series
    Middlehurst, Matthew
    Ismail-Fawaz, Ali
    Guillaume, Antoine
    Holder, Christopher
    Guijo-Rubio, David
    Bulatov, Guzal
    Tsaprounis, Leonidas
    Mentel, Lukasz
    Walter, Martin
    Schaefer, Patrick
    Bagnall, Anthony
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [45] Immunopeptidomics toolkit library (IPTK): a python']python-based modular toolbox for analyzing immunopeptidomics data
    ElAbd, Hesham
    Degenhardt, Frauke
    Koudelka, Tomas
    Kamps, Ann-Kristin
    Tholey, Andreas
    Bacher, Petra
    Lenz, Tobias L.
    Franke, Andre
    Wendorff, Mareike
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [46] The Lompe code: A Python']Python toolbox for ionospheric data analysis
    Hovland, A. O.
    Laundal, K. M.
    Reistad, J. P.
    Hatch, S. M.
    Walker, S. J.
    Madelaire, M.
    Ohma, A.
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [47] Pylipid: A Python']Python Toolkit for Analysis of Lipid-Protein Interactions from MD Simulations
    Song, Wanling
    Corey, Robin A.
    Duncan, Anna L.
    Ansell, T. Bertie
    Stansfeld, Phillip J.
    Sansom, Mark S.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 48A - 48A
  • [48] GuPPy, a Python']Python toolbox for the analysis of fiber photometry data
    Sherathiya, Venus N.
    Schaid, Michael D.
    Seiler, Jillian L.
    Lopez, Gabriela C.
    Lerner, Talia N.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [49] Analysis of counting data: Development of the SATLAS Python']Python package
    Gins, W.
    de Groote, R. P.
    Bissell, M. L.
    Buitrago, C. Granados
    Ferrer, R.
    Lynch, K. M.
    Neyens, G.
    Sels, S.
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 : 286 - 294
  • [50] Refrapy: A Python']Python program for seismic refraction data analysis
    Cavalcanti Bezerra Guedes, Victor Jose
    Ramalho Maciel, Susanne Taina
    Rocha, Marcelo Peres
    COMPUTERS & GEOSCIENCES, 2022, 159