A note on random densities via wavelets

被引:7
|
作者
Vidakovic, B [1 ]
机构
[1] DUKE UNIV,ISDS,DURHAM,NC 27708
关键词
wavelets; Parseval's Identity; random density;
D O I
10.1016/0167-7152(95)00026-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is a well-known fact that any orthonormal basis in L(2) can produce a ''random density''. If {phi(n)} is an orthonormal basis and (a,) is a sequence of random variables such that Sigma a(n)(2) = 1 a.s., then f(x) = \Sigma a(n) phi(n)(x)\(2) is a random density. In this note we define a random density via orthogonal bases of wavelets and explore some of its basic properties.
引用
收藏
页码:315 / 321
页数:7
相关论文
共 50 条
  • [31] Polynomial mechanics via wavelets
    Fedorova, AN
    Zeitlin, MG
    CONTROL OF OSCILLATIONS AND CHAOS - 1997 1ST INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS 1-3, 1997, : 159 - 160
  • [32] Invariant densities for random β-expansions
    Dajani, Karma
    de Vries, Martijn
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2007, 9 (01) : 157 - 176
  • [33] Probabilistic analysis of a class of 2D-random heat equations via densities
    Bevia, V.
    Calatayud, J.
    Cortes, J. -c.
    APPLIED MATHEMATICS LETTERS, 2023, 146
  • [34] Note on the solution of random differential equations via ψ-Hilfer fractional derivative
    S. Harikrishnan
    Kamal Shah
    Dumitru Baleanu
    K. Kanagarajan
    Advances in Difference Equations, 2018
  • [35] A note on variable selection in functional regression via random subspace method
    Łukasz Smaga
    Hidetoshi Matsui
    Statistical Methods & Applications, 2018, 27 : 455 - 477
  • [36] A note on variable selection in functional regression via random subspace method
    Smaga, Lukasz
    Matsui, Hidetoshi
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (03): : 455 - 477
  • [37] Note on the solution of random differential equations via ψ-Hilfer fractional derivative
    Harikrishnan, S.
    Shah, Kamal
    Baleanu, Dumitru
    Kanagarajan, K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [38] COHERENT STRUCTURES IN RANDOM-MEDIA AND WAVELETS
    BERKOOZ, G
    ELEZGARAY, J
    HOLMES, P
    PHYSICA D, 1992, 61 (1-4): : 47 - 58
  • [39] RANDOM WAVELETS AND CYBERNETIC SYSTEMS - ROBINSON,EA
    JENKINS, GM
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1965, 14 (2-3): : 212 - 213
  • [40] Note on specular densities and forward scattering
    Urbach, F
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1944, 34 (10) : 592 - 594