Adaptive optics two-photon fluorescence microscopy

被引:4
|
作者
Zhou, Yaopeng [1 ]
Bifano, Thomas [1 ]
Lin, Charles [2 ]
机构
[1] Boston Univ, Dept Mfg Engn, 15 St Marys St, Brookline, MA 02446 USA
[2] Wellman Ctr Photomed, Boston, MA 02114 USA
来源
MEMS ADAPTIVE OPTICS | 2007年 / 6467卷
关键词
adaptive optics and deformable mirror;
D O I
10.1117/12.705045
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Non-linear imaging is widely used in biological imaging, primarily because of its ability to image through tissue to depth of a few hundred micrometers. Because two photons need to be absorbed to excite a fluorophore in this instrument, the probability of fluorescence emission of a detectable photon scales with the intensity squared of the beam. As a result, aberrations in the beam path that reduce the peak intensity of the focused, scanned laser spot have a significant effect on the instrument performance. Methods for reducing those aberrations should allow higher resolution and detection sensitivity, and deeper tissue imaging. In this paper, I will describe a non-linear imaging microscope that has an adaptive optics (AO) subsystem to compensate for beam path aberrations. The AO system relies on a 140 actuator deformable mirror, controlled using a stochastic gradient descent algorithm with feedback from a fluorescence sensor. The controlled instrument will be used for in vivo imaging of mouse skin, lymph nodes, and skull bone marrow at depths up to 500 mu m.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Retinal microvascular and neuronal pathologies probed in vivo by adaptive optical two-photon fluorescence microscopy
    Zhang, Qinrong
    Yang, Yuhan
    Cao, Kevin J.
    Chen, Wei
    Paidi, Santosh
    Xia, Chun-hong
    Kramer, Richard H.
    Gong, Xiaohua
    Ji, Na
    ELIFE, 2023, 12
  • [42] Two-photon microscopy
    Diaspro, A
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1999, 18 (05): : 16 - 17
  • [43] Axial range of conjugate adaptive optics in two-photon microscopy (vol 23, pg 20849, 2015)
    Paudel, Hari P.
    Taranto, John
    Mertz, Jerome
    Bifano, Thomas
    OPTICS EXPRESS, 2015, 23 (21): : 27635 - 27635
  • [44] Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section
    Girkin, J. M.
    Vijverberg, J.
    Orazio, M.
    Poland, S.
    Wright, A. J.
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES VII, 2007, 6442
  • [45] Two-Color Two-Photon Fluorescence Laser Scanning Microscopy
    S. Quentmeier
    S. Denicke
    K.-H. Gericke
    Journal of Fluorescence, 2009, 19 : 1037 - 1043
  • [46] Two-Color Two-Photon Fluorescence Laser Scanning Microscopy
    Quentmeier, S.
    Denicke, S.
    Gericke, K. -H.
    JOURNAL OF FLUORESCENCE, 2009, 19 (06) : 1037 - 1043
  • [47] Two-photon geometric optics
    Pittman, TB
    Strekalov, DV
    Klyshko, DN
    Rubin, MH
    Sergienko, AV
    Shih, YH
    PHYSICAL REVIEW A, 1996, 53 (04): : 2804 - 2815
  • [48] Two-photon geometric optics
    Univ of Maryland Baltimore County, Baltimore, United States
    Phys Rev A, 4 (2804-2815):
  • [49] Background Rejection in Two-Photon Fluorescence Image Scanning Microscopy
    Sheppard, Colin J. R.
    Castello, Marco
    Tortarolo, Giorgio
    Zunino, Alessandro
    Slenders, Eli
    Bianchini, Paolo
    Vicidomini, Giuseppe
    Diaspro, Alberto
    PHOTONICS, 2023, 10 (05)
  • [50] Two-photon fluorescence microscopy of in-vivo human skin
    Hendriks, RFM
    Lucassen, GW
    LASER MICROSCOPY, 2000, 4164 : 116 - 121