Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis

被引:239
|
作者
Liu, Manhua [1 ,2 ]
Cheng, Danni [1 ]
Wang, Kundong [1 ]
Wang, Yaping [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch EIEE, Dept Instrument Sci & Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Engn Res Ctr Intelligent Diag & Treatmen, Shanghai 200240, Peoples R China
[3] Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Alzheimer's disease diagnosis; Multi-modality brain images; Convolutional neural networks (CNNs); Cascaded CNNs; Image classification; CLASSIFICATION; MRI; ADNI;
D O I
10.1007/s12021-018-9370-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accurate and early diagnosis of Alzheimer's disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classification pMCI vs. NC, demonstrating the promising classification performance.
引用
收藏
页码:295 / 308
页数:14
相关论文
共 50 条
  • [21] MULTI-MODALITY STACKED DEEP POLYNOMIAL NETWORK BASED FEATURE LEARNING FOR ALZHEIMER'S DISEASE DIAGNOSIS
    Zheng, Xiao
    Shi, Jun
    Li, Yan
    Liu, Xiao
    Zhang, Qi
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 851 - 854
  • [22] Domain-specific information preservation for Alzheimer's disease diagnosis with incomplete multi-modality neuroimages
    Xu, Haozhe
    Wang, Jian
    Feng, Qianjin
    Zhang, Yu
    Ning, Zhenyuan
    MEDICAL IMAGE ANALYSIS, 2025, 101
  • [23] The Research of Multi-Modality Parkinson's Disease Image Based on Cross-Layer Convolutional Neural Network
    Dai, Yin
    Tao, Zuitian
    Wang, Yang
    Zhao, Yiqi
    Hou, Jiaxin
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (07) : 1440 - 1447
  • [24] Multi-modality MRI for Alzheimer’s disease detection using deep learning
    Latifa Houria
    Noureddine Belkhamsa
    Assia Cherfa
    Yazid Cherfa
    Physical and Engineering Sciences in Medicine, 2022, 45 : 1043 - 1053
  • [25] Multi-modality MRI for Alzheimer's disease detection using deep learning
    Houria, Latifa
    Belkhamsa, Noureddine
    Cherfa, Assia
    Cherfa, Yazid
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2022, 45 (04) : 1043 - 1053
  • [26] Neuroimaging modality fusion in Alzheimer's classification using convolutional neural networks
    Punjabi, Arjun
    Martersteck, Adam
    Wang, Yanran
    Parrish, Todd B.
    Katsaggelos, Aggelos K.
    PLOS ONE, 2019, 14 (12):
  • [27] Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment Using Convolutional Neural Networks
    Dakdareh, Sara Ghasemi
    Abbasian, Karim
    JOURNAL OF ALZHEIMERS DISEASE REPORTS, 2024, 8 (01) : 317 - 328
  • [28] Research of spatial context convolutional neural networks for early diagnosis of Alzheimer's disease
    Tong, Yinsheng
    Li, Zuoyong
    Huang, Hui
    Gao, Libin
    Xu, Minghai
    Hu, Zhongyi
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (04): : 5279 - 5297
  • [29] Using Three-dimensional Convolutional Neural Networks for Alzheimer's Disease Diagnosis
    Lin, Cheng-Jian
    Lin, Cheng-Wei
    SENSORS AND MATERIALS, 2021, 33 (10) : 3399 - 3413
  • [30] Research of spatial context convolutional neural networks for early diagnosis of Alzheimer’s disease
    Yinsheng Tong
    Zuoyong Li
    Hui Huang
    Libin Gao
    Minghai Xu
    Zhongyi Hu
    The Journal of Supercomputing, 2024, 80 (4) : 5279 - 5297