An extension of Bruhat's lemma

被引:9
|
作者
Springer, T. A. [1 ]
机构
[1] Inst Math, NL-3584 CD Utrecht, Netherlands
关键词
reductive groups; Bruhat's lemma; compactification;
D O I
10.1016/j.jalgebra.2006.09.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent work of Lusztig and He [G. Lusztig, Parabolic character sheaves 1, Mosc. Math. J. 4 (2004) 153-179; G. Lusztig, Parabolic character sheaves II, Mosc. Math. J. 4 (2004) 869-896; X. He, Unipotent variety in the group compactification, Adv. Math. 203 (2006) 109-131; X. He, The G-stable pieces of the wonderful compactification, Trans. Amer. Math. Soc., in press] certain decompositions are introduced in the wonderful compactification of an adjoint group G. To establish them a combinatorial machinery introduced by 136dard is used. The present note gives another approach to these results. We derive them in Section 3 from a result about G, an analogue of Bruhat's lemma proved in Section 2 (see Theorem 2.6). Basic in our approach is the elementary Lemma 1.6. The approach can also be used to deal with properties of Lusztig's parabolic character sheaves. We do not go into this here. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:417 / 427
页数:11
相关论文
共 50 条
  • [41] An extension of the mountain pass lemma
    Wang, Lizhou
    Li, Dongsheng
    APPLIED MATHEMATICS LETTERS, 2008, 21 (06) : 554 - 557
  • [42] EXTENSION OF SCHWARZ-LEMMA
    WEN, T
    KEXUE TONGBAO, 1983, 28 (06): : 855 - 856
  • [43] An Extension of Yuan’s Lemma to Fourth-Order Tensor System
    Qingzhi Yang
    Yang Zhou
    Yuning Yang
    Journal of Optimization Theory and Applications, 2019, 180 : 803 - 810
  • [44] Extension of Stein's lemma derived by using an integration by differentiation technique
    Mamis, Konstantinos
    EXAMPLES AND COUNTEREXAMPLES, 2022, 2
  • [45] An extension of Vizing's adjacency lemma on edge chromatic critical graphs
    Choudum, SA
    Kayathri, K
    DISCRETE MATHEMATICS, 1999, 206 (1-3) : 97 - 103
  • [46] An Extension of Yuan's Lemma to Fourth-Order Tensor System
    Yang, Qingzhi
    Zhou, Yang
    Yang, Yuning
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 180 (03) : 803 - 810
  • [47] Schwarz Lemma: The Case of Equality and an Extension
    Haojie Chen
    Xiaolan Nie
    The Journal of Geometric Analysis, 2022, 32
  • [48] An extension of a lemma by Phelps to Hilbert Spaces
    Cardwell, Antonia E.
    FUNCTION SPACES IN MODERN ANALYSIS, 2011, 547 : 79 - 85
  • [49] CONTINUOUS TIME EXTENSION OF FELLERS LEMMA
    PRABHU, NU
    RUBINOVI.M
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (03): : 220 - &
  • [50] SOME REMARKS ON HARTOGS' EXTENSION LEMMA
    Cerne, Miran
    Flores, Manuel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (10) : 3603 - 3608