Gene expression predictors of breast cancer outcomes

被引:492
|
作者
Huang, E
Cheng, SH
Dressman, H
Pittman, J
Tsou, MH
Horng, CF
Bild, A
Iversen, ES
Liao, M
Chen, CM
West, M
Nevins, JR [1 ]
Huang, AT
机构
[1] Duke Univ, Med Ctr, Dept Mol Genet & Microbiol, Durham, NC 27708 USA
[2] Duke Univ, Dept Med, Durham, NC 27708 USA
[3] Duke Univ, Dept Biostat & Bioinformat, Durham, NC 27708 USA
[4] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
[5] Koo Fdn Sun Yat Sen Canc Ctr, Taipei, Taiwan
[6] Howard Hughes Med Inst, Durham, NC USA
来源
LANCET | 2003年 / 361卷 / 9369期
关键词
D O I
10.1016/S0140-6736(03)13308-9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Correlation of risk factors with genomic data promises to provide specific treatment for individual patients, and needs interpretation of complex, multivariate patterns in gene expression data, as well as assessment of their ability to improve clinical predictions. We aimed to predict nodal metastatic states and relapse for breast cancer patients.. Methods We analysed DNA microarray data from samples of primary breast tumours, using non-linear statistical analyses to assess multiple patterns of interactions of groups of genes that have predictive value for the individual patient, with respect to lymph node metastasis and cancer recurrence. Findings We identified aggregate patterns of gene expression (metagenes) that associate with lymph node status and recurrence, and that are capable of predicting outcomes in individual patients with about 90% accuracy. The metagenes defined distinct groups of genes, suggesting different biological processes underlying these two characteristics of breast cancer. Initial external validation came from similarly accurate predictions of nodal status of a small sample in a distinct population. Interpretation Multiple aggregate measures of profiles of gene expression define valuable predictive associations with lymph node metastasis and disease recurrence for individual patients. Gene expression data have the potential to aid accurate, individualised, prognosis. Importantly, these data are assessed in terms of precise numerical predictions, with ranges of probabilities of outcome. Precise and statistically valid assessments of risks specific for patients, will ultimately be of most value to clinicians faced with treatment decisions.
引用
收藏
页码:1590 / 1596
页数:7
相关论文
共 50 条
  • [31] Taxanes and gene expression in breast cancer cells
    Rzymowska, Jolanta
    Maj, Piotr
    Niemczyk, Maciej
    Malewski, Tadeusz
    Wilkolaski, Andrzej
    ACTA POLONIAE PHARMACEUTICA, 2008, 65 (01): : 153 - 157
  • [32] Cortactin Gene Amplification and Expression in Breast Cancer
    Lopez-Garcia, M. A.
    Geyer, F. C.
    Lambros, M. B.
    Vatcheva, R.
    Natrajan, R.
    Dedes, K. K.
    Reis-Filho, J. S.
    MODERN PATHOLOGY, 2010, 23 : 60A - 60A
  • [33] Cortactin Gene Amplification and Expression in Breast Cancer
    Lopez-Garcia, M. A.
    Geyer, F. C.
    Lambros, M. B.
    Vatcheva, R.
    Natrajan, R.
    Dedes, K. K.
    Reis-Filho, J. S.
    LABORATORY INVESTIGATION, 2010, 90 : 60A - 60A
  • [34] Gene-expression profiling in breast cancer
    Jenssen, TK
    Hovig, E
    LANCET, 2005, 365 (9460): : 634 - 635
  • [35] Disturbance of circadian gene expression in breast cancer
    Kuo, Shou-Jen
    Chen, Shou-Tung
    Yeh, Kun-Tu
    Hou, Ming-Feng
    Chang, Ya-Sian
    Hsu, Nicholas C.
    Chang, Jan-Gowth
    VIRCHOWS ARCHIV, 2009, 454 (04) : 467 - 474
  • [36] Spatial gene expression profiling in breast cancer
    Spears, Melanie
    Talebian, Vida
    Liao, Linda
    Hopkins, Megan
    Jain, Drashti
    Quintayo, Mary Anne
    Bayani, Jane
    Cheung, Alison
    Yaffe, Martin
    Bartlett, John M.
    CANCER RESEARCH, 2021, 81 (13)
  • [37] Gene expression signature of hereditary breast cancer
    Dudaladava, V
    Jarzab, M
    Pamula, J
    Pekala, W
    Huzarski, T
    Lubinski, J
    Grzybowska, E
    Lisowska, K
    BREAST CANCER RESEARCH, 2005, 7 (Suppl 2) : S46 - S47
  • [38] Gene expression signature of hereditary breast cancer
    V Dudaladava
    M Jarzab
    J Pamula
    W Pekala
    T Huzarski
    J Lubinski
    E Grzybowska
    K Lisowska
    Breast Cancer Research, 7
  • [39] The Impact of Gene Expression Patterns in Breast Cancer
    Sorlie, Therese
    CLINICAL CHEMISTRY, 2016, 62 (08) : 1150 - 1151
  • [40] Gene Expression Profiling of Inflammatory Breast Cancer
    Bertucci, Francois
    Finetti, Pascal
    Birnbaum, Daniel
    Viens, Patrice
    CANCER, 2010, 116 (11) : 2783 - 2793