On the converse of Anderson's theorem

被引:1
|
作者
Blanco, A.
Turnsek, A. [1 ]
机构
[1] Queens Univ Belfast, Dept Pure Matrh, Belfast N17 1NN, Antrim, North Ireland
[2] Univ Ljubljana, Fac Mech Engn, Ljubljana 1000, Slovenia
关键词
Anderson's inequality; Fuglede-Putnam; Hilbert space; James orthogonality;
D O I
10.1016/j.laa.2007.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the converse of Anderson's theorem on the range-kernel orthogonality of a derivation. In particular, we show that a pair of bounded linear operators on a Hilbert space satisfies the Fuglede-Putnam theorem relative to the ideal of compact operators if and only if it satisfies Anderson's inequality relative to the same ideal. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:384 / 389
页数:6
相关论文
共 50 条