Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer

被引:117
|
作者
Elsinga, G. E. [1 ]
Adrian, R. J. [2 ]
van Oudheusden, B. W. [1 ]
Scarano, F. [1 ]
机构
[1] Delft Univ Technol, Dept Aerosp Engn, NL-2629 HS Delft, Netherlands
[2] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA
关键词
PARTICLE IMAGE VELOCIMETRY; LARGE-SCALE MOTIONS; DIRECT NUMERICAL-SIMULATION; COHERENT MOTIONS; OUTER REGION; PACKETS; CHANNEL; FLOWS;
D O I
10.1017/S0022112009992047
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in a supersonic (Mach 2) turbulent boundary layer in the region between gamma/delta = 0.15 and 0.89. The Reynolds number based on momentum thickness Re-theta = 34 000. The instantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low-speed fluid, consistent with Tomkins & Adrian (J. Fluid Mech., vol. 490, 2003, p. 37). The observed hairpin structure is also a statistically relevant structure as is shown by the conditional average flow field associated to spanwise swirling motion. Spatial low-pass filtering of the velocity field reveals streamwise vortices and signatures of large-scale hairpins (height > 0.5 delta), which are weaker than the smaller scale hairpins in the unfiltered velocity field. The large-scale hairpin structures in the instantaneous velocity fields are observed to be aligned in the streamwise direction and spanwise organized along diagonal lines. Additionally the autocorrelation function of the wall-normal swirling motion representing the large-scale hairpin structure returns positive correlation peaks in the streamwise direction (at 1.5 delta distance from the DC peak) and along the 45 degrees diagonals, which also suggest a periodic arrangement in those directions. This is evidence for the existence of a spanwise-stream wise organization of the coherent structures in a fully turbulent boundary layer.
引用
收藏
页码:35 / 60
页数:26
相关论文
共 50 条
  • [31] High-Reynolds-number turbulent-boundary-layer wall-pressure fluctuations with dilute polymer solutions
    Elbing, Brian R.
    Winkel, Eric S.
    Ceccio, Steven L.
    Perlin, Marc
    Dowling, David R.
    PHYSICS OF FLUIDS, 2010, 22 (08)
  • [32] Sand-turbulence interaction in a high-Reynolds-number turbulent boundary layer under net sedimentation conditions
    Zhu, Hang-Yu
    Pan, Chong
    Wang, Jin-Jun
    Liang, Yi-Rui
    Ji, Xiao-Cang
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2019, 119 : 56 - 71
  • [33] Instabilities in a high-Reynolds-number boundary layer on a film-coated surface
    Timoshin, SN
    JOURNAL OF FLUID MECHANICS, 1997, 353 : 163 - 195
  • [34] On the suitability of the immersed boundary method for the simulation of high-Reynolds-number separated turbulent flows
    Bernardini, Matteo
    Modesti, Davide
    Pirozzoli, Sergio
    COMPUTERS & FLUIDS, 2016, 130 : 84 - 93
  • [35] Turbulent boundary layer statistics at very high Reynolds number
    Vallikivi, M.
    Hultmark, M.
    Smits, A. J.
    JOURNAL OF FLUID MECHANICS, 2015, 779 : 371 - 389
  • [36] Interactions within the turbulent boundary layer at high Reynolds number
    Guala, M.
    Metzger, M.
    McKeon, B. J.
    JOURNAL OF FLUID MECHANICS, 2011, 666 : 573 - 604
  • [37] Cinematic particle image velocimetry of high-Reynolds-number turbulent free shear layer
    Oakley, TR
    Loth, E
    Adrian, RJ
    AIAA JOURNAL, 1996, 34 (02) : 299 - 308
  • [38] High Reynolds number turbulent boundary-layer experiments
    Österlund, JM
    Johansson, AV
    ADVANCES IN TURBULENCE VIII, 2000, : 395 - 398
  • [39] The wall-pressure spectrum of high-Reynolds-number turbulent boundary-layer flows over rough surfaces
    Meyers, Timothy
    Forest, Jonathan B.
    Devenport, William J.
    JOURNAL OF FLUID MECHANICS, 2015, 768 : 261 - 293
  • [40] The three-dimensional flow organization past a micro-ramp in a supersonic boundary layer
    Sun, Z.
    Schrijer, F. F. J.
    Scarano, F.
    van Oudheusden, B. W.
    PHYSICS OF FLUIDS, 2012, 24 (05)