On the complexities of the incremental bottleneck and bottleneck terminal Steiner tree problems

被引:0
|
作者
Chen, Yen Hung [1 ]
机构
[1] Univ Taipei, Dept Comp Sci, Taipei, Taiwan
关键词
computational complexity; approximation complexity (approximation class); network design; the class of the incremental network design problems; the bottleneck Steiner tree problem; the bottleneck terminal Steiner tree problem; APPROXIMATION ALGORITHM; NETWORK DESIGN; BOUNDS; RATIO; FULL;
D O I
10.1109/ICS.2016.9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given a graph G = (V, E) with non-negative edge lengths, a subset R subset of V, a Steiner tree for R in G is an acyclic subgraph of G interconnecting all vertices in R and a terminal Steiner tree is defined to be a Steiner tree in G with all the vertices of R as its leaves. A bottleneck edge of a Steiner tree is an edge with the largest length in the Steiner tree. The bottleneck Steiner tree problem (BSTP) (respectively, the bottleneck terminal Steiner tree problem (BTSTP)) is to find a Steiner tree (respectively, a terminal Steiner tree) for R in G with minimum length of a bottleneck edge. For any arbitrary tree T, len(b)(T) denotes the length of a bottleneck edge in T. Let T-opt(G, BSTP) and T-opt(G, BTSTP) denote the optimal solutions for the BSTP and the BTSTP in G, respectively. Given a graph G = (V, E) with non-negative edge lengths, a subset E-0 subset of E, a number h = vertical bar E\ E-0 vertical bar, and a subset R subset of V, the incremental bottleneck Steiner tree problem (respectively, the incremental bottleneck terminal Steiner tree problem) is to find a sequence of edge sets {E-0 subset of E-1 subset of E-2 subset of ... subset of E-h = E} with vertical bar E-i \ Ei-1 vertical bar = 1 such that Sigma(h)(i=1) len(b)(T-opt(G(i), BSTP)) (respectively, Sigma(h)(i=1) len(b)(T-opt(G(i), BTSTP))) is minimized, where G(i) = (V, E-i). In this paper, we prove that the incremental bottleneck Steiner tree problem is NP-hard. Then we show that there is no polynomial time approximation algorithm achieving a performance ratio of (1 - epsilon) x ln vertical bar R vertical bar, 0 < epsilon < 1, for the incremental bottleneck terminal Steiner tree problem unless NP subset of DTIME(vertical bar R vertical bar(log) (log) (vertical bar R vertical bar)).
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] An approximation algorithm for a bottleneck k-Steiner tree problem in the Euclidean plane
    Wang, LS
    Li, ZM
    INFORMATION PROCESSING LETTERS, 2002, 81 (03) : 151 - 156
  • [32] LEXICOGRAPHIC BOTTLENECK PROBLEMS
    BURKARD, RE
    RENDL, F
    OPERATIONS RESEARCH LETTERS, 1991, 10 (05) : 303 - 308
  • [33] ON THE STABILITY OF BOTTLENECK PROBLEMS
    GORDEYEV, EN
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1993, 33 (09) : 1229 - 1237
  • [34] Generalizing Bottleneck Problems
    Hsu, Hsiang
    Asoodeh, Shahab
    Salamatian, Salman
    Calmon, Flavio P.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 531 - 535
  • [35] Quadratic Bottleneck Problems
    Punnen, Abraham P.
    Zhang, Ruonan
    NAVAL RESEARCH LOGISTICS, 2011, 58 (02) : 153 - 164
  • [37] Quadratic bottleneck knapsack problems
    Zhang, Ruonan
    Punnen, Abraham P.
    JOURNAL OF HEURISTICS, 2013, 19 (04) : 573 - 589
  • [38] CONSTRAINED MATROIDAL BOTTLENECK PROBLEMS
    AVERBAKH, I
    BERMAN, O
    PUNNEN, AP
    DISCRETE APPLIED MATHEMATICS, 1995, 63 (03) : 201 - 214
  • [39] Quadratic bottleneck knapsack problems
    Ruonan Zhang
    Abraham P. Punnen
    Journal of Heuristics, 2013, 19 : 573 - 589
  • [40] A class of bottleneck expansion problems
    Zhang, JZ
    Yang, C
    Lin, YX
    COMPUTERS & OPERATIONS RESEARCH, 2001, 28 (06) : 505 - 519