On the complexities of the incremental bottleneck and bottleneck terminal Steiner tree problems

被引:0
|
作者
Chen, Yen Hung [1 ]
机构
[1] Univ Taipei, Dept Comp Sci, Taipei, Taiwan
关键词
computational complexity; approximation complexity (approximation class); network design; the class of the incremental network design problems; the bottleneck Steiner tree problem; the bottleneck terminal Steiner tree problem; APPROXIMATION ALGORITHM; NETWORK DESIGN; BOUNDS; RATIO; FULL;
D O I
10.1109/ICS.2016.9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given a graph G = (V, E) with non-negative edge lengths, a subset R subset of V, a Steiner tree for R in G is an acyclic subgraph of G interconnecting all vertices in R and a terminal Steiner tree is defined to be a Steiner tree in G with all the vertices of R as its leaves. A bottleneck edge of a Steiner tree is an edge with the largest length in the Steiner tree. The bottleneck Steiner tree problem (BSTP) (respectively, the bottleneck terminal Steiner tree problem (BTSTP)) is to find a Steiner tree (respectively, a terminal Steiner tree) for R in G with minimum length of a bottleneck edge. For any arbitrary tree T, len(b)(T) denotes the length of a bottleneck edge in T. Let T-opt(G, BSTP) and T-opt(G, BTSTP) denote the optimal solutions for the BSTP and the BTSTP in G, respectively. Given a graph G = (V, E) with non-negative edge lengths, a subset E-0 subset of E, a number h = vertical bar E\ E-0 vertical bar, and a subset R subset of V, the incremental bottleneck Steiner tree problem (respectively, the incremental bottleneck terminal Steiner tree problem) is to find a sequence of edge sets {E-0 subset of E-1 subset of E-2 subset of ... subset of E-h = E} with vertical bar E-i \ Ei-1 vertical bar = 1 such that Sigma(h)(i=1) len(b)(T-opt(G(i), BSTP)) (respectively, Sigma(h)(i=1) len(b)(T-opt(G(i), BTSTP))) is minimized, where G(i) = (V, E-i). In this paper, we prove that the incremental bottleneck Steiner tree problem is NP-hard. Then we show that there is no polynomial time approximation algorithm achieving a performance ratio of (1 - epsilon) x ln vertical bar R vertical bar, 0 < epsilon < 1, for the incremental bottleneck terminal Steiner tree problem unless NP subset of DTIME(vertical bar R vertical bar(log) (log) (vertical bar R vertical bar)).
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] The Bottleneck Selected-Internal and Partial Terminal Steiner Tree Problems
    Chen, Yen Hung
    NETWORKS, 2016, 68 (04) : 331 - 339
  • [2] On the full and bottleneck full Steiner tree problems
    Chen, YH
    Lu, CL
    Tang, CY
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2003, 2697 : 122 - 129
  • [3] Approximations for a Bottleneck Steiner Tree Problem
    Algorithmica, 2002, 32 : 554 - 561
  • [4] Approximations for a bottleneck Steiner tree problem
    Wang, L
    Du, DZ
    ALGORITHMICA, 2002, 32 (04) : 554 - 561
  • [5] Bottleneck Steiner tree with bounded number of Steiner vertices
    Abu-Affash, A. Karim
    Carmi, Paz
    Katz, Matthew J.
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 30 : 96 - 100
  • [6] The Euclidean bottleneck Steiner tree and Steiner tree with minimum number of Steiner points
    Du, DZ
    Wang, LS
    Xu, BA
    COMPUTING AND COMBINATORICS, 2001, 2108 : 509 - 518
  • [7] On the Euclidean Bottleneck Full Steiner Tree Problem
    Abu-Affash, A. Karim
    COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 433 - 439
  • [8] Exact Algorithms for the Bottleneck Steiner Tree Problem
    Bae, Sang Won
    Choi, Sunghee
    Lee, Chunseok
    Tanigawa, Shin-ichi
    ALGORITHMICA, 2011, 61 (04) : 924 - 948
  • [9] The Euclidean Bottleneck Full Steiner Tree Problem
    A. Karim Abu-Affash
    Algorithmica, 2015, 71 : 139 - 151
  • [10] The Euclidean Bottleneck Full Steiner Tree Problem
    Abu-Affash, A. Karim
    ALGORITHMICA, 2015, 71 (01) : 139 - 151