On a two-dimensional analogue of Szemeredi's theorem in Abelian groups

被引:3
|
作者
Shkredov, I. D. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow, Russia
关键词
two-dimensional generalizations of Szemeredi's theorem; problems on arithmetic progressions; Roth's theorem; Bohr sets; ARITHMETIC PROGRESSIONS; ROTHS THEOREM; REGULARITY; SUBSETS; GOWERS; PROOF;
D O I
10.1070/IM2009v073n05ABEH002472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite Abelian group and A subset of G x G a set of cardinality at least vertical bar G vertical bar(2)/(log log vertical bar G vertical bar)(c), where c > 0 is air absolute constant. We prove that A contains a triple {(k,m), (k + d, m), (k,m + d)} with d not equal 0. This is a two-dimensional generalization of Szemeredi's theorem on arithmetic progressions.
引用
收藏
页码:1033 / 1075
页数:43
相关论文
共 50 条
  • [21] A Szemeredi-type regularity lemma in abelian groups, with applications
    Green, B
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (02) : 340 - 376
  • [22] An Analogue of Beurling’s Theorem for NA Groups
    Ji Zheng Huang
    Acta Mathematica Sinica, English Series, 2013, 29 : 841 - 856
  • [23] An Analogue of Beurling's Theorem for NA Groups
    Ji Zheng HUANG
    Acta Mathematica Sinica,English Series, 2013, (05) : 841 - 856
  • [24] A new proof of Szemeredi's theorem
    Gowers, WT
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) : 465 - 588
  • [25] A ternary analogue of Abelian groups
    Lehmer, DH
    AMERICAN JOURNAL OF MATHEMATICS, 1932, 54 : 329 - 338
  • [26] A Two-Dimensional Analogue of the Luttinger Model
    Edwin Langmann
    Letters in Mathematical Physics, 2010, 92 : 109 - 124
  • [27] A Two-Dimensional Analogue of the Luttinger Model
    Langmann, Edwin
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 92 (02) : 109 - 124
  • [28] A two-dimensional analogue of the Virasoro algebra
    Wagemann, F
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 36 (1-2) : 103 - 116
  • [29] Analogue two-dimensional semiconductor electronics
    Polyushkin, Dmitry K.
    Wachter, Stefan
    Mennel, Lukas
    Paur, Matthias
    Paliy, Maksym
    Iannaccone, Giuseppe
    Fiori, Gianluca
    Neumaier, Daniel
    Canto, Barbara
    Mueller, Thomas
    NATURE ELECTRONICS, 2020, 3 (08) : 486 - 491
  • [30] Analogue two-dimensional semiconductor electronics
    Dmitry K. Polyushkin
    Stefan Wachter
    Lukas Mennel
    Matthias Paur
    Maksym Paliy
    Giuseppe Iannaccone
    Gianluca Fiori
    Daniel Neumaier
    Barbara Canto
    Thomas Mueller
    Nature Electronics, 2020, 3 : 486 - 491