Ovoids of parabolic spaces

被引:59
|
作者
Penttila, T [1 ]
Williams, B [1 ]
机构
[1] Univ Western Australia, Dept Math, Nedlands, WA 6907, Australia
关键词
ovoids; generalised quadrangles; translation planes; semifields;
D O I
10.1023/A:1005244202633
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new ovoid in the orthogonal space O(5, 3(5)) is presented, along with its associated spreads and (semifield) translation planes. Sundry results on ovoids and spreads are given. In particular, we complete the calculation of the stabilisers of the known O(5, q) ovoids.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [41] LEBESGUE SPACES OF PARABOLIC POTENTIALS
    BAGBY, RJ
    ILLINOIS JOURNAL OF MATHEMATICS, 1971, 15 (04) : 610 - &
  • [42] PARABOLIC COMPACTIFICATION OF HOMOGENEOUS SPACES
    Cap, Andreas
    Rod Gover, A.
    Hammerl, Matthias
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (04) : 1371 - 1408
  • [43] Ovoids
    Conte, Bruno
    GRADIVA, 2017, (51): : 62 - 63
  • [44] A characterization of m-ovoids and i-tight sets of polar spaces
    De Bruyn, Bart
    ADVANCES IN GEOMETRY, 2008, 8 (03) : 367 - 375
  • [45] On incidence structures of nonsingular points and hyperbolic lines of ovoids in finite orthogonal spaces
    Fuelberth, John
    Gunawardena, Athula
    Shaffer, C. David
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 57 (01) : 15 - 33
  • [46] Function spaces induced by two parabolic Bloch spaces
    Hishikawa, Yosuke
    Nishio, Masaharu
    Shimomura, Katsunori
    Yamada, Masahiro
    HIROSHIMA MATHEMATICAL JOURNAL, 2021, 51 (03) : 247 - 265
  • [47] Hyperpolygon spaces and moduli spaces of parabolic Higgs bundles
    Godinho, Leonor
    Mandini, Alessia
    ADVANCES IN MATHEMATICS, 2013, 244 : 465 - 532
  • [48] Parabolic Fractional Maximal Operator in Modified Parabolic Morrey Spaces
    Guliyev, Vagif S.
    Rahimova, Kamala R.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [49] PARABOLIC FRACTIONAL MAXIMAL OPERATOR IN PARABOLIC GENERALIZED MORREY SPACES
    Guliyev, Vagif S.
    Rahimova, Kamala R.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2012, 37 (45): : 51 - 66
  • [50] Some non-existence results on m-ovoids in classical polar spaces
    De Beule, Jan
    Mannaert, Jonathan
    Smaldore, Valentino
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118