The composition of extended Mittag-Leffler functions with pathway integral operator

被引:6
|
作者
Rahman, G. [1 ]
Ghaffar, A. [2 ]
Mubeen, S. [3 ]
Arshad, M. [1 ]
Khan, S. U. [4 ]
机构
[1] Int Islamic Univ, Dept Math, Islamabad, Pakistan
[2] BUITEMS, Dept Math Sci, Quetta, Pakistan
[3] Univ Sargodha, Dept Math, Sargodha, Pakistan
[4] Gomal Univ, Dept Math, Dera Ismail Khan, Pakistan
关键词
extended Mittag-Leffler function; pathway fractional integral operator; GENERALIZED FRACTIONAL INTEGRALS; DIFFERENTIAL-EQUATIONS; PRODUCT;
D O I
10.1186/s13662-017-1237-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present certain composition formulae of the pathway fractional integral operators associated with two extended Mittag-Leffler functions. Here, we find out the relevant connections of some particular cases of the main results with those earlier ones.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Mittag-Leffler Functions and Their Applications
    Haubold, H. J.
    Mathai, A. M.
    Saxena, R. K.
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [22] Differentiation of integral Mittag-Leffler and integral Wright functions with respect to parameters
    Apelblat, Alexander
    Gonzalez-Santander, Juan Luis
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (02) : 567 - 598
  • [23] Differentiation of integral Mittag-Leffler and integral Wright functions with respect to parameters
    Alexander Apelblat
    Juan Luis González-Santander
    Fractional Calculus and Applied Analysis, 2023, 26 : 567 - 598
  • [24] Mittag-Leffler Operator Connected with Certain Subclasses of Bazilevic Functions
    Ahuja, Om
    cetinkaya, Asena
    Jain, Naveen Kumar
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [25] Mittag-Leffler functions in superstatistics
    dos Santos, Maike A. F.
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [26] STARLIKENESS AND CONVEXITY OF INTEGRAL OPERATORS INVOLVING MITTAG-LEFFLER FUNCTIONS
    Frasin, B. A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (03): : 913 - 920
  • [27] UNIFIED FRACTIONAL INTEGRAL FORMULAE FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS
    Suthar, Daya Lal
    Purohit, Sunil Dutt
    JOURNAL OF SCIENCE AND ARTS, 2014, (02): : 117 - 124
  • [28] ON AN EXTENSION OF THE OPERATOR WITH MITTAG-LEFFLER KERNEL
    Al-Refai, Mohammed
    Baleanu, Dumitru
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
  • [29] Integral Representation of the Mittag-Leffler Function
    V. V. Saenko
    Russian Mathematics, 2022, 66 : 43 - 58
  • [30] On Euler Type Integrals Involving Extended Mittag-Leffler Functions
    Joshi, Sunil
    Mittal, Ekta
    Pandey, Rupakshi Mishra
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (02): : 125 - 134