Knots and links in three-dimensional flows - Introduction

被引:0
|
作者
Ghrist, RW [1 ]
Holmes, PJ
Sullivan, MC
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
[2] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[3] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08618 USA
[4] Princeton Univ, Dept Aerosp & Mech Engn, Princeton, NJ 08618 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [21] Marginal separation in three-dimensional flows
    Zametaev, VB
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1996, 8 (03) : 183 - 200
  • [22] ITCZ breakdown in three-dimensional flows
    Wang, CC
    Magnusdottir, G
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2005, 62 (05) : 1497 - 1512
  • [23] Two-dimensional turbulence in three-dimensional flows
    Xia, H.
    Francois, N.
    PHYSICS OF FLUIDS, 2017, 29 (11)
  • [24] Three-dimensional stratifications, knots and bifurcations of two-dimensional dynamical systems
    Banks, SP
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (01): : 1 - 21
  • [25] Tracer dispersion in three-dimensional multipole flows
    Zhang, M
    Koplik, J
    PHYSICAL REVIEW E, 1997, 56 (04): : 4244 - 4258
  • [26] Numerical simulation of three-dimensional combustion flows
    Tan Zhi-yong
    Mu Yong
    Zheng Hong-tao
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2005, 4 (03) : 42 - 46
  • [27] Drop breakup in three-dimensional viscous flows
    Cristini, V
    Blawzdziewicz, J
    Loewenberg, M
    PHYSICS OF FLUIDS, 1998, 10 (08) : 1781 - 1783
  • [28] Kinematical symmetries of three-dimensional incompressible flows
    Gümral, H
    PHYSICA D, 2000, 135 (1-2): : 117 - 136
  • [29] Homoclinic Orbits and Entropy for Three-Dimensional Flows
    Lopez, A. M.
    Metzger, R. J.
    Morales, C. A.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) : 799 - 805
  • [30] Multiple solutions for three-dimensional swirling flows
    Barbosa, E
    Daube, O
    COMPTES RENDUS MECANIQUE, 2002, 330 (11): : 791 - 796