Accelerating TDECQ Assessments using Convolutional Neural Networks

被引:0
|
作者
Varughese, Siddharth [1 ]
Garon, Daniel A. [1 ]
Melgar, Alirio [1 ]
Thomas, Varghese A. [1 ]
Zivny, Pavel [2 ]
Hazzard, Shane [2 ]
Ralph, Stephan E. [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Tektronix Inc, Beaverton, OR 97007 USA
来源
2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC) | 2020年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We experimentally demonstrate the use of convolutional neural networks to accelerate TDECQ assessments for 400G direct-detect transmitter qualification. The method estimates TDECQ from static eye-diagrams similar to 1000 times faster than conventional methods with <0.25dB mean discrepancy.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] ESPACE: Accelerating Convolutional Neural Networks via Eliminating Spatial and Channel Redundancy
    Lin, Shaohui
    Ji, Rongrong
    Chen, Chao
    Huang, Feiyue
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1424 - 1430
  • [42] Accelerating the Training of Convolutional Neural Networks for Image Segmentation with Deep Active Learning
    Chen, Weitao
    Salay, Rick
    Sedwards, Sean
    Abdelzad, Vahdat
    Czarnecki, Krzysztof
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [43] Distillation Sparsity Training Algorithm for Accelerating Convolutional Neural Networks in Embedded Systems
    Xiao, Penghao
    Xu, Teng
    Xiao, Xiayang
    Li, Weisong
    Wang, Haipeng
    REMOTE SENSING, 2023, 15 (10)
  • [44] Accelerating Large-Scale Convolutional Neural Networks with Parallel Graphics Multiprocessors
    Scherer, Dominik
    Schulz, Hannes
    Behnke, Sven
    ARTIFICIAL NEURAL NETWORKS (ICANN 2010), PT III, 2010, 6354 : 82 - 91
  • [45] Direct Conversion: Accelerating Convolutional Neural Networks Utilizing Sparse Input Activation
    Lee, Won-Hyuk
    Roh, Si-Dong
    Park, Sangki
    Chung, Ki-Seok
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 441 - 446
  • [46] Accelerating Deep Convolutional Neural on GPGPU
    Zurek, Dominik
    Pietron, Marcin
    Wiatr, Kazimierz
    INTELLIGENT COMPUTING, VOL 2, 2021, 284 : 712 - 724
  • [47] Accelerating Compact Convolutional Neural Networks with Multi-threaded Data Streaming
    Chen, Weiguang
    Wang, Zheng
    Li, Shanliao
    Li, Huijuan
    Yu, Zhibin
    2019 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2019), 2019, : 521 - 524
  • [48] RFPruning: A retraining-free pruning method for accelerating convolutional neural networks
    Wang, Zhenyu
    Xie, Xuemei
    Shi, Guangming
    APPLIED SOFT COMPUTING, 2021, 113
  • [49] An Updated Survey of Efficient Hardware Architectures for Accelerating Deep Convolutional Neural Networks
    Capra, Maurizio
    Bussolino, Beatrice
    Marchisio, Alberto
    Shafique, Muhammad
    Masera, Guido
    Martina, Maurizio
    FUTURE INTERNET, 2020, 12 (07):
  • [50] Accelerating Binarized Convolutional Neural Networks with Dynamic Partial Reconfiguration on Disaggregated FPGAs
    Skrimponis, Panagiotis
    Pissadakis, Emmanouil
    Alachiotis, Nikolaos
    Pnevmatikatos, Dionisios
    PARALLEL COMPUTING: TECHNOLOGY TRENDS, 2020, 36 : 691 - 700