Network Anomaly Detection Using Federated Learning

被引:1
|
作者
Marfo, William [1 ]
Tosh, Deepak K. [1 ]
Moore, Shirley V. [1 ]
机构
[1] Univ Texas El Paso, Dept Comp Sci, El Paso, TX 79968 USA
关键词
Federated Learning; Artificial Intelligence; Machine Learning; Deep Learning; Networks; Anomaly Detection; Security Attacks;
D O I
10.1109/MILCOM55135.2022.10017793
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the veracity and heterogeneity in network traffic, detecting anomalous events is challenging. The computational load on global servers is a significant challenge in terms of efficiency, accuracy, and scalability. Our primary motivation is to introduce a robust and scalable framework that enables efficient network anomaly detection. We address the issue of scalability and efficiency for network anomaly detection by leveraging federated learning, in which multiple participants train a global model jointly. Unlike centralized training architectures, federated learning does not require participants to upload their training data to the server, preventing attackers from exploiting the training data. Moreover, most prior works have focused on traditional centralized machine learning, making federated machine learning under-explored in network anomaly detection. Therefore, we propose a deep neural network framework that could work on low to mid-end devices detecting network anomalies while checking if a request from a specific IP address is malicious or not. Compared to multiple traditional centralized machine learning models, the deep neural federated model reduces training time overhead. The proposed method performs better than baseline machine learning techniques on the UNSW-NB15 data set as measured by experiments conducted with an accuracy of 97.21% and a faster computation time.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] FedGroup: A Federated Learning Approach for Anomaly Detection in IoT Environments
    Zhang, Yixuan
    Suleiman, Basem
    Alibasa, Muhammad Johan
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, MOBIQUITOUS 2022, 2023, 492 : 121 - 132
  • [42] Differentially Private Federated Learning for Anomaly Detection in eHealth Networks
    Cholakoska, Ana
    Pfitzner, Bjarne
    Gjoreski, Hristijan
    Rakovic, Valentin
    Arnrich, Bert
    Kalendar, Marija
    UBICOMP/ISWC '21 ADJUNCT: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2021 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2021, : 514 - 518
  • [43] A Federated Learning Approach for Anomaly Detection in High Performance Computing
    Farooq, Emmen
    Borghesi, Andrea
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 496 - 500
  • [44] Anomaly detection and defense techniques in federated learning: a comprehensive review
    Zhang, Chang
    Yang, Shunkun
    Mao, Lingfeng
    Ning, Huansheng
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (06)
  • [45] Collaborative Anomaly Detection for Internet of Things based on Federated Learning
    Kim, Seongwoo
    Cai, He
    Hua, Cunqing
    Gu, Pengwenlong
    Xu, Wenchao
    Park, Jeonghyeok
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 623 - 628
  • [46] Trust-Based Anomaly Detection in Federated Edge Learning
    Zatsarenko, Raman
    Chuprov, Sergei
    Korobeinikov, Dmitrii
    Reznik, Leon
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0273 - 0279
  • [47] Federated disentangled representation learning for unsupervised brain anomaly detection
    Cosmin I. Bercea
    Benedikt Wiestler
    Daniel Rueckert
    Shadi Albarqouni
    Nature Machine Intelligence, 2022, 4 : 685 - 695
  • [48] Identifying Backdoor Attacks in Federated Learning via Anomaly Detection
    Mi, Yuxi
    Sun, Yiheng
    Guan, Jihong
    Zhou, Shuigeng
    WEB AND BIG DATA, PT III, APWEB-WAIM 2023, 2024, 14333 : 111 - 126
  • [49] Federated Variational Learning for Anomaly Detection in Multivariate Time Series
    Zhang, Kai
    Jiang, Yushan
    Seversky, Lee
    Xu, Chengtao
    Liu, Dahai
    Song, Houbing
    2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [50] Federated Learning with Anomaly Client Detection and Decentralized Parameter Aggregation
    Shu Liu
    Shang, Yanlei
    52ND ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOP VOLUME (DSN-W 2022), 2022, : 37 - 43