POSITIVE OPERATOR-VALUED MEASURES AND DENSELY DEFINED OPERATOR-VALUED FRAMES

被引:1
|
作者
Robinson, Benjamin [1 ]
Moran, Bill [2 ]
Cochran, Doug [3 ]
机构
[1] US Air Force Res Lab, 2241 Av Cir, Wright Patterson AFB, OH 45433 USA
[2] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
[3] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
关键词
frames; g-frames; operator-valued frames; positive operator-valued measures; Radon-Nikodym theorem;
D O I
10.1216/rmj.2021.51.265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the signal-processing literature, a frame is a mechanism for performing analysis and reconstruction in a Hilbert space. By contrast, in quantum theory, a positive operator-valued measure (POVM) decomposes a Hilbert-space vector for the purpose of computing measurement probabilities. Frames and their most common generalizations can be seen to give rise to POVMs, but does every reasonable POVM arise from a type of frame? We answer this question using a Radon-Nikodym-type result.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [11] Operator-valued frames on C*-modules
    Kaftal, Victor
    Larson, David
    Zhang, Shuang
    FRAMES AND OPERATOR THEORY IN ANALYSIS AND SIGNAL PROCESSING, 2008, 451 : 171 - 185
  • [12] Factorable weak operator-valued frames
    K. Mahesh Krishna
    P. Sam Johnson
    Annals of Functional Analysis, 2022, 13
  • [13] Operator-Valued Frames for the Heisenberg Group
    Robinson, Benjamin
    Moran, William
    Cochran, Douglas
    Howard, Stephen D.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (06) : 1384 - 1397
  • [14] SOME PROPERTIES OF OPERATOR-VALUED FRAMES
    Gavruta, Laura
    Gavruta, Pasc
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (02) : 469 - 476
  • [15] SOME PROPERTIES OF OPERATOR-VALUED FRAMES
    Laura GAVRUTA
    Pasc GAVRUTA
    Acta Mathematica Scientia, 2016, (02) : 469 - 476
  • [16] Factorable weak operator-valued frames
    Krishna, K. Mahesh
    Johnson, P. Sam
    ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (01)
  • [17] Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures
    Gabardo, Jean-Pierre
    Han, Deguang
    ACTA APPLICANDAE MATHEMATICAE, 2020, 166 (01) : 11 - 27
  • [18] COMPATIBILITY OF OBSERVABLES REPRESENTED BY POSITIVE OPERATOR-VALUED MEASURES
    KRUSZYNSKI, P
    DEMUYNCK, WM
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (08) : 1761 - 1763
  • [19] Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures
    Jean-Pierre Gabardo
    Deguang Han
    Acta Applicandae Mathematicae, 2020, 166 : 11 - 27
  • [20] Positive Operator-Valued Measures in Quantum Decision Theory
    Yukalov, Vyacheslav I.
    Sornette, Didier
    QUANTUM INTERACTION (QI 2014), 2015, 8951 : 146 - 161