Proteome-Wide Analysis of Protein Lysine N-Homocysteinylation in Saccharomyces cerevisiae

被引:6
|
作者
Perla-Kajan, Joanna [2 ]
Malinowska, Agata [1 ]
Zimny, Jarosl Aw [2 ]
Cysewski, Dominik [1 ]
Suszynska-Zajczyk, Joanna [2 ]
Jakubowski, Hieronim [2 ,3 ]
机构
[1] PAS, Mass Spectrometry Lab, Inst Biochem & Biophys, PL-02106 Warsaw, Poland
[2] Poznan Univ Life Sci, Dept Biochem & Biotechnol, PL-60632 Poznan, Poland
[3] Rutgers New Jersey Med Sch, Int Ctr Publ Hlth, Dept Microbiol Biochem & Mol Genet, Newark, NJ 07103 USA
关键词
yeast proteome; protein N-homocysteinylation; homocysteine thiolactone; homocysteine; mass spectrometry; TRANSFER-RNA SYNTHETASES; PROOFREADING IN-VIVO; THIOLACTONE; GENE; METABOLISM; SEQUENCE; IDENTIFICATION; SUCCINYLATION; MECHANISM; TOXICITY;
D O I
10.1021/acs.jproteome.0c00937
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Protein N-homocysteinylation by a homocysteine (Hcy) metabolite, Hcy-thiolactone, is an emerging post-translational modification (PTM) that occurs in all tested organisms and has been linked to human diseases. The yeast Saccharomyces cerevisiae is widely used as a model eukaryotic organism in biomedical research, including studies of protein PTMs. However, patterns of global protein N-homocysteinylation in yeast are not known. Here, we identified 68 in vivo and 197 in vitro N-homocysteinylation sites at protein lysine residues (N-Hcy-Lys). Some of the N-homocysteinylation sites overlap with other previously identified PTM sites. Protein N-homocysteinylation in vivo, induced by supplementation of yeast cultures with Hcy, which elevates Hcy-thiolactone levels, was accompanied by significant changes in the levels of 70 yeast proteins (38 up-regulated and 32 down-regulated) involved in the ribosomal structure, amino acid biosynthesis, and basic cellular pathways. Our study provides the first global survey of N-homocysteinylation and accompanying changes in the yeast proteome caused by elevated Hcy level. These findings suggest that protein N-homocysteinylation and dysregulation of cellular proteostasis may contribute to the toxicity of Hcy in yeast. Homologous proteins and N-homocysteinylation sites are likely to be involved in Hcy-related pathophysiology in humans and experimental animals. Data are available via ProteomeXchange with identifier PXD020821.
引用
收藏
页码:2458 / 2476
页数:19
相关论文
共 50 条
  • [1] Proteome-wide Analysis of Lysine Acetylation Suggests its Broad Regulatory Scope in Saccharomyces cerevisiae
    Henriksen, Peter
    Wagner, Sebastian A.
    Weinert, Brian T.
    Sharma, Satyan
    Bacinskaja, Giedre
    Rehman, Michael
    Juffer, Andre H.
    Walther, Tobias C.
    Lisby, Michael
    Choudhary, Chunaram
    MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (11) : 1510 - 1522
  • [2] Protein N-Homocysteinylation and Colorectal Cancer
    Jakubowski, Hieronim
    TRENDS IN CANCER, 2019, 5 (01): : 7 - 10
  • [3] Protein N-homocysteinylation:: implications for atherosclerosis
    Jakubowski, H
    BIOMEDICINE & PHARMACOTHERAPY, 2001, 55 (08) : 443 - 447
  • [4] Proteome-Wide Screens in Saccharomyces cerevisiae Using the Yeast GFP Collection
    Chong, Yolanda T.
    Cox, Michael J.
    Andrews, Brenda
    ADVANCES IN SYSTEMS BIOLOGY, 2012, 736 : 169 - 178
  • [5] Proteome-wide Analysis of Amino Acid Variations That Influence Protein Lysine Acetylation
    Suo, Sheng-Bao
    Qiu, Jian-Ding
    Shi, Shao-Ping
    Chen, Xiang
    Huang, Shu-Yun
    Liang, Ru-Ping
    JOURNAL OF PROTEOME RESEARCH, 2013, 12 (02) : 949 - 958
  • [6] Advances in proteome-wide analysis of plant lysine acetylation
    Xia, Linchao
    Kong, Xiangge
    Song, Haifeng
    Han, Qingquan
    Zhang, Sheng
    PLANT COMMUNICATIONS, 2022, 3 (01)
  • [8] Proteome-wide profiling of protein lysine acetylation in Aspergillus flavus
    Lv, Yangyong
    PLOS ONE, 2017, 12 (06):
  • [9] Proteome-Wide Fluctuation Analysis Of S.cerevisiae
    Wood, Christopher
    Huff, Joseph
    Dai, Shiqiang
    Wiegraebe, Winfried
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 308A - 308A
  • [10] Sex affects N-homocysteinylation at lysine residue 212 of albumin in mice
    Sikora, Marta
    Marczak, Lukasz
    Perla-Kajan, Joanna
    Jakubowski, Hieronim
    SCIENTIFIC REPORTS, 2019, 9 (1)