Controllability completion problems of partial upper triangular matrices

被引:1
|
作者
Jordán, C [1 ]
Torregrosa, JR [1 ]
Urbano, A [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, E-46071 Valencia, Spain
来源
LINEAR & MULTILINEAR ALGEBRA | 2000年 / 47卷 / 01期
关键词
partial matrix; completion problems; controllability indices;
D O I
10.1080/03081080008818632
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result of this paper states sufficient conditions for the existence of a completion A(c) of an n x n partial upper triangular matrix A, such that the pair (A(c), B) has prescribed controllability indices, being B an n x m matrix. If A is a partial Hessenberg matrix some conditions may be dropped. An algorithm that obtains a completion A(c) of A such that pair (A(c), e(k)) is completely controllable, where ek is a unit vector, is used to proof the results.
引用
收藏
页码:57 / 75
页数:19
相关论文
共 50 条
  • [21] Group gradings on upper triangular matrices
    A. Valenti
    M. V. Zaicev
    Archiv der Mathematik, 2007, 89 : 33 - 40
  • [22] Preserving diagonalisability on upper triangular matrices
    Kobal, D
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (03): : 189 - 194
  • [23] Spectra of upper triangular operator matrices
    Benhida, C
    Zerouali, EH
    Zguitti, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) : 3013 - 3020
  • [24] Upper triangular matrices and Billiard Arrays
    Yang, Yang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 : 508 - 536
  • [25] Conjugacy in groups of upper triangular matrices
    Isaacs, IM
    Karagueuzian, D
    JOURNAL OF ALGEBRA, 1998, 202 (02) : 704 - 711
  • [26] CFI upper triangular operator matrices
    Dong, Jiong
    Cao, Xiaohong
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (07): : 1217 - 1227
  • [27] A Field of Quantum Upper Triangular Matrices
    De Commer, Kenny
    Flore, Matthias
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (16) : 5047 - 5077
  • [28] Homogeneous involutions on upper triangular matrices
    de Mello, Thiago Castilho
    ARCHIV DER MATHEMATIK, 2022, 118 (04) : 365 - 374
  • [29] On commuting varieties of upper triangular matrices
    Basili, Roberta
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1533 - 1541
  • [30] On the invertibility of upper triangular operator matrices
    Hai, Guojun
    Chen, Alatancang
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (04): : 538 - 547