Northern peatlands contain an estimated 1/3 of the world's soil carbon pool. This large carbon pool is of concern due to its uncertain future in a changing climate. Blanket bogs are peatlands that occur in temperate maritime regions where precipitation is much greater than evapotranspiration. We describe five years (1 October 2002 to 30 September 2007) of eddy-covariance (EC) carbon dioxide (CO2) flux measurements in an Atlantic blanket bog in Ireland. The measured net ecosystem CO2 exchange (NEE) was partitioned into its components of ecosystem respiration (ER) and gross ecosystem production (GEP). The inter-annual variation of the CO2 fluxes was investigated using correlation coefficient analyses with measured hydro-meteorological parameters. The annual NEE was negative for all five years (thus the peatland was a sink of CO2), ranging between -16.5 +/- 5.1 and -96.5 +/- 23.2 g C-CO2 m(-2) (average of -54.9 +/- 15.6 g C-CO2 m(-2)). During the study period, NEE was negative for the same five months in each year (May-September). NEE showed the highest CO2 uptake (due to the highest GEP) in the summer with intermediate rather than extreme meteorological conditions, thus with low vapour pressure deficit, intermediate soil water content, air temperature and light radiation, which might be partly explained by the role of the bryophyte community. Under climate change predictions of higher temperature, the inter-annual variation analysis suggests that ER might increase in winter. Furthermore, the predicted lower precipitation and higher temperature in the summer are expected to lead to lower GEP. The resulting increase in NEE (thus lower CO2 uptake) will be partly compensated by a higher GEP in warmer winters and in dryer autumns. Moreover, the CO2 uptake will benefit by a longer growing season, while wetter conditions will likely lower the ecosystem respiration in the spring. The length of the growing season was found to be driven by warmer winter and September soil temperatures. (C) 2009 Elsevier B.V. All rights reserved.
机构:
Chinese Univ Hong Kong, Dept Geog & Resource Management, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Geog & Resource Management, Shatin, Hong Kong, Peoples R China
Lai, Derrick Y. F.
Roulet, Nigel T.
论文数: 0引用数: 0
h-index: 0
机构:
McGill Univ, Dept Geog, Montreal, PQ H3A 0B9, Canada
McGill Univ, Global Environm & Climate Change Ctr, Montreal, PQ H3A 0B9, CanadaChinese Univ Hong Kong, Dept Geog & Resource Management, Shatin, Hong Kong, Peoples R China
Roulet, Nigel T.
Moore, Tim R.
论文数: 0引用数: 0
h-index: 0
机构:
McGill Univ, Dept Geog, Montreal, PQ H3A 0B9, Canada
McGill Univ, Global Environm & Climate Change Ctr, Montreal, PQ H3A 0B9, CanadaChinese Univ Hong Kong, Dept Geog & Resource Management, Shatin, Hong Kong, Peoples R China
机构:
Mt Holyoke Coll, Environm Studies Program, S Hadley, MA 01075 USA
Univ Helsinki, Dept Forest Sci, FIN-00014 Helsinki, FinlandMt Holyoke Coll, Environm Studies Program, S Hadley, MA 01075 USA
Juutinen, Sari
Bubier, Jill L.
论文数: 0引用数: 0
h-index: 0
机构:
Mt Holyoke Coll, Environm Studies Program, S Hadley, MA 01075 USAMt Holyoke Coll, Environm Studies Program, S Hadley, MA 01075 USA
Bubier, Jill L.
Moore, Tim R.
论文数: 0引用数: 0
h-index: 0
机构:
McGill Univ, Dept Geog, Montreal, PQ H3A 2K6, CanadaMt Holyoke Coll, Environm Studies Program, S Hadley, MA 01075 USA