Tactile Sensing Using Machine Learning-Driven Electrical Impedance Tomography

被引:17
|
作者
Husain, Zainab [1 ]
Madjid, Nadya Abdel [1 ]
Liatsis, Panos [1 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates
关键词
Sensors; Image reconstruction; Voltage measurement; Image segmentation; Shape; Object recognition; Conductivity; Electrical impedance tomography; tactile sensing; image reconstruction; segmentation; object recognition; IMAGE-RECONSTRUCTION; CONTACT IMPEDANCE; EIT; CLASSIFICATION; RECOGNITION; SEGMENTATION; SENSORS; IMPACT; TOUCH; SHAPE;
D O I
10.1109/JSEN.2021.3054870
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical Impedance Tomography (EIT) tactile sensors have limited success in equipping robots with tactile sensing capabilities due to the low spatial resolution of the resulting tactile images and the presence of image artifacts. To address these limitations, we propose a modular framework for invariant recognition of objects, within the context of an EIT artificial skin sensor. Three interconnected problems, i.e., EIT image reconstruction, segmentation and object recognition, are tackled in this work with the aid of machine learning. A novel conductivity surface decomposition approach, based on low order bivariate polynomials and RBF networks is introduced for the efficient solution of the EIT inverse problem. Next, segmentation of the reconstructed images is performed using a convolutional neural network and transfer learning. Finally, a subspace KNN ensemble classifier is trained on the set of object descriptors extracted from the segmented inhomogeneities to classify the objects. The proposed framework provides an accuracy of 97.5% on unseen data.
引用
收藏
页码:11628 / 11642
页数:15
相关论文
共 50 条
  • [31] A comparative study of selected machine learning algorithms for electrical impedance tomography
    Dziadosz, Marcin
    Mazurek, Mariusz
    Stefaniak, Barbara
    Wojcik, Dariusz
    Gauda, Konrad
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (04): : 237 - 240
  • [32] A machine learning-driven web application for sign language learning
    Orovwode, Hope
    Ibukun, Oduntan
    Abubakar, John Amanesi
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [33] Data-driven electrical resistance tomography for robotic large-area tactile sensing
    Wendong ZHENG
    Huaping LIU
    Xiaofeng LIU
    Fuchun SUN
    Science China(Information Sciences), 2024, 67 (09) : 336 - 337
  • [34] Data-driven electrical resistance tomography for robotic large-area tactile sensing
    Zheng, Wendong
    Liu, Huaping
    Liu, Xiaofeng
    Sun, Fuchun
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (09)
  • [35] Machine learning-driven predictions and interventions for cardiovascular occlusions
    Thomas, Anvin
    Jose, Rejath
    Syed, Faiz
    Wei, Ong Chi
    Toma, Milan
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (05) : 3535 - 3556
  • [36] Improving performance of aerosol jet printing using machine learning-driven optimization
    Pandey P.
    Ziesche S.
    Meghanathi G.
    Applied Research, 2024, 3 (05):
  • [37] MACHINE LEARNING-DRIVEN TEMPORAL SUBPHENOTYPES OF EARLY SEPSIS
    Ahamed, Younus
    Smith, Gordon
    Kumar, Gagan
    Nadkarni, Girish
    Adjeroh, Donald
    Sakhuja, Ankit
    CRITICAL CARE MEDICINE, 2024, 52
  • [38] Machine learning-driven structure prediction for iron hydrides
    Tahmasbi, Hossein
    Ramakrishna, Kushal
    Lokamani, Mani
    Cangi, Attila
    PHYSICAL REVIEW MATERIALS, 2024, 8 (03):
  • [39] Machine learning-driven credit risk: a systemic review
    Shi, Si
    Tse, Rita
    Luo, Wuman
    D'Addona, Stefano
    Pau, Giovanni
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (17): : 14327 - 14339
  • [40] Machine learning-driven credit risk: a systemic review
    Si Shi
    Rita Tse
    Wuman Luo
    Stefano D’Addona
    Giovanni Pau
    Neural Computing and Applications, 2022, 34 : 14327 - 14339