Integrative Cancer Pharmacogenomics to Infer Large-Scale Drug Taxonomy

被引:25
|
作者
El-Hachem, Nehme [1 ,2 ]
Gendoo, Deena M. A. [3 ,4 ]
Ghoraie, Laleh Soltan [3 ,4 ]
Safikhani, Zhaleh [3 ,4 ]
Smirnov, Petr [3 ]
Chung, Christina [5 ]
Deng, Kenan [5 ]
Fang, Ailsa [5 ]
Birkwood, Erin [6 ]
Ho, Chantal [5 ]
Isserlin, Ruth [5 ]
Bader, Gary D. [5 ,7 ,8 ]
Goldenberg, Anna [5 ,9 ]
Haibe-Kains, Benjamin [3 ,4 ,5 ,10 ]
机构
[1] Inst Recherches Clin Montreal, Integrat Computat Syst Biol, Montreal, PQ, Canada
[2] Univ Montreal, Dept Biomed Sci, Montreal, PQ, Canada
[3] Univ Hlth Network, Princess Margaret Canc Ctr, Res Tower,11-310,101 Coll St, Toronto, ON M5G 1L7, Canada
[4] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[5] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[6] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[7] Donnelly Ctr, Toronto, ON, Canada
[8] Mt Sinai Hosp, Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
[9] Hosp Sick Children, Toronto, ON, Canada
[10] Ontario Inst Canc Res, Toronto, ON, Canada
基金
加拿大健康研究院;
关键词
GENE-EXPRESSION SIGNATURES; BIG DATA; IDENTIFICATION; SENSITIVITY; SIMILARITY; MODELS; CELLS; CONNECTIVITY; INHIBITION; PREDICTION;
D O I
10.1158/0008-5472.CAN-17-0096
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Identification of drug targets and mechanism of action (MoA) for new and uncharacterized anticancer drugs is important for optimization of treatment efficacy. Current MoA prediction largely relies on prior information including side effects, therapeutic indication, and chemoinformatics. Such information is not transferable or applicable for newly identified, previously uncharacterized small molecules. Therefore, a shift in the paradigm of MoA predictions is necessary toward development of unbiased approaches that can elucidate drug relationships and efficiently classify new compounds with basic input data. We propose here a new integrative computational pharmacogenomic approach, referred to as Drug Network Fusion (DNF), to infer scalable drug taxonomies that rely only on basic drug characteristics toward elucidating drug-drug relationships. DNF is the first framework to integrate drug structural information, high-throughput drug perturbation, and drug sensitivity profiles, enabling drug classification of new experimental compounds with minimal prior information. DNF taxonomy succeeded in identifying pertinent and novel drug-drug relationships, making it suitable for investigating experimental drugs with potential new targets or MoA. The scalability of DNF facilitated identification of key drug relationships across different drug categories, providing a flexible tool for potential clinical applications in precision medicine. Our results support DNF as a valuable resource to the cancer research community by providing new hypotheses on compound MoA and potential insights for drug repurposing. (C) 2017 AACR.
引用
收藏
页码:3057 / 3069
页数:13
相关论文
共 50 条
  • [41] Large-Scale Chromatin Rearrangements in Cancer
    Yamaguchi, Kosuke
    Chen, Xiaoying
    Oji, Asami
    Hiratani, Ichiro
    Defossez, Pierre-Antoine
    CANCERS, 2022, 14 (10)
  • [42] A Taxonomy of Inter-Team Coordination Mechanisms in Large-Scale Agile
    Berntzen, Marthe
    Hoda, Rashina
    Moe, Nils Brede
    Stray, Viktoria
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (02) : 699 - 718
  • [43] Harnessing large-scale biodiversity data to infer the current distribution of Vanilla planifolia (Orchidaceae)
    Ellestad, Paige
    Forest, Felix
    Serpe, Marcelo
    Novak, Stephen J.
    Buerki, Sven
    BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, 2021, 196 (03) : 407 - 422
  • [44] Integrative approaches for large-scale transcriptome-wide association studies
    Alexander Gusev
    Arthur Ko
    Huwenbo Shi
    Gaurav Bhatia
    Wonil Chung
    Brenda W J H Penninx
    Rick Jansen
    Eco J C de Geus
    Dorret I Boomsma
    Fred A Wright
    Patrick F Sullivan
    Elina Nikkola
    Marcus Alvarez
    Mete Civelek
    Aldons J Lusis
    Terho Lehtimäki
    Emma Raitoharju
    Mika Kähönen
    Ilkka Seppälä
    Olli T Raitakari
    Johanna Kuusisto
    Markku Laakso
    Alkes L Price
    Päivi Pajukanta
    Bogdan Pasaniuc
    Nature Genetics, 2016, 48 : 245 - 252
  • [45] Integrative approaches for large-scale transcriptome-wide association studies
    Gusev, Alexander
    Ko, Arthur
    Shi, Huwenbo
    Bhatia, Gaurav
    Chung, Wonil
    Penninx, Brenda W. J. H.
    Jansen, Rick
    de Geus, Eco J. C.
    Boomsma, Dorret I.
    Wright, Fred A.
    Sullivan, Patrick F.
    Nikkola, Elina
    Alvarez, Marcus
    Civelek, Mete
    Lusis, Aldons J.
    Lehtimaki, Terho
    Raitoharju, Emma
    Kahonen, Mika
    Seppala, Ilkka
    Raitakari, Olli T.
    Kuusisto, Johanna
    Laakso, Markku
    Price, Alkes L.
    Pajukanta, Paivi
    Pasaniuc, Bogdan
    NATURE GENETICS, 2016, 48 (03) : 245 - 252
  • [46] Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines
    Zhao, Wei
    Li, Jun
    Chen, Mei-Ju M.
    Luo, Yikai
    Ju, Zhenlin
    Nesser, Nicole K.
    Johnson-Camacho, Katie
    Boniface, Christopher T.
    Lawrence, Yancey
    Pande, Nupur T.
    Davies, Michael A.
    Herlyn, Meenhard
    Muranen, Taru
    Zervantonakis, Ioannis K.
    von Euw, Erika
    Schultz, Andre
    Kumar, Shwetha, V
    Korkut, Anil
    Spellman, Paul T.
    Akbani, Rehan
    Slamon, Dennis J.
    Gray, Joe W.
    Brugge, Joan S.
    Lu, Yiling
    Mills, Gordon B.
    Liang, Han
    CANCER CELL, 2020, 38 (06) : 829 - +
  • [47] Large-Scale Elucidation of Drug Response Pathways in Humans
    Silberberg, Yael
    Gottlieb, Assaf
    Kupiec, Martin
    Ruppin, Eytan
    Sharan, Roded
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (02) : 163 - 174
  • [48] Large-Scale Drug Screens Support Precision Medicine
    Gray, Joe W.
    Mills, Gordon B.
    CANCER DISCOVERY, 2015, 5 (11) : 1130 - 1132
  • [49] Strategy for large-scale isolation of enantiomers in drug discovery
    Leek, Hanna
    Thunberg, Linda
    Jonson, Anna C.
    Ohlen, Kristina
    Klarqvist, Magnus
    DRUG DISCOVERY TODAY, 2017, 22 (01) : 133 - 139
  • [50] Large-scale prediction of drug-target relationships
    Kuhn, Michael
    Campillos, Monica
    Gonzalez, Paula
    Jensen, Lars Juhl
    Bork, Peer
    FEBS LETTERS, 2008, 582 (08) : 1283 - 1290