Some diagnostic results in nonparametric density estimation

被引:10
|
作者
Kim, C
Kim, W
机构
[1] Pusan Natl Univ, Dept Stat, Pusan 609735, South Korea
[2] Seoul Natl Univ, Dept Comp Sci & Stat, Seoul 151742, South Korea
关键词
bandwidth; Cook's distance; cross-validation; influential observations;
D O I
10.1080/03610929808832096
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Kernel method is most widely used in nonparametric density estimation and data-driven bandwidth selection such as least squares cross-validation is frequently used to estimate the corresponding bandwidth parameter. In this paper, we define a version of Cook's distance (Cook 1977) to investigate the influence of few observations on the overall shape of the curve, and suggest useful formula to detect influential observations on the estimator of bandwidth. An example based on a real data set is given.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 50 条
  • [31] Nonparametric density estimation for stratified samples
    Breunig, Robert
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (14) : 2194 - 2200
  • [32] Nonparametric density estimation and galaxy clustering
    Jang, W
    STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 443 - 445
  • [33] An overview of sequential nonparametric density estimation
    Mukhopadhyay, N
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) : 4395 - 4402
  • [34] A new method for nonparametric density estimation
    Hurn, AS
    Lindsay, KA
    JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 12 (02) : 177 - 196
  • [35] The Kernel Density Estimation of Nonparametric Model
    Nong, Jifu
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1173 - 1177
  • [36] NONPARAMETRIC-ESTIMATION OF DENSITY PROFILES
    MERRITT, D
    TREMBLAY, B
    ASTRONOMICAL JOURNAL, 1994, 108 (02): : 514 - 537
  • [37] SPLINES IN NONPARAMETRIC-ESTIMATION OF THE DENSITY
    AIDU, FA
    AUTOMATION AND REMOTE CONTROL, 1987, 48 (08) : 1033 - 1040
  • [38] Nonparametric estimation of quantile density function
    Soni, Pooja
    Dewan, Isha
    Jain, Kanchan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 3876 - 3886
  • [39] Nonparametric estimation of the density of regression errors
    Samb, Rawane
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (23-24) : 1281 - 1285
  • [40] Nonparametric Density Estimation with Adversarial Losses
    Singh, Shashank
    Uppal, Ananya
    Li, Boyue
    Li, Chun-Liang
    Zaheer, Manzil
    Poczos, Barnabas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31