Attention and Feature Fusion SSD for Remote Sensing Object Detection

被引:132
|
作者
Lu, Xiaocong [1 ]
Ji, Jian [1 ]
Xing, Zhiqi [1 ]
Miao, Qiguang [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network; dual-path attention mechanism; feature fusion; image processing; object detection; remote sensing;
D O I
10.1109/TIM.2021.3052575
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Object detection is a basic topic in the field of remote sensing. However, remote sensing images usually suffer in complicated backgrounds, object scale variations, and small objects, which make remote sensing object detection still difficult. Although the existing two-stage methods have higher accuracy, their detection speed is slow. While the one-stage object detection algorithms such as single-shot detector (SSD) and YOLO, although they can achieve real-time detection, they have poor detection performance, especially for small objects. In this article, in order to further improve the remote sensing object detection performance of one-stage methods, we propose an end-to-end network named attention and feature fusion SSD. First, a multilayer feature fusion structure is designed to enhance the semantic information of the shallow features. Next, a dual-path attention module is introduced to screen the feature information. This module uses spatial attention and channel attention to suppress the background noise and highlight the key feature. Then, the feature representation ability of the network is further enhanced by a multiscale receptive field module. Finally, the loss function is optimized to alleviate the imbalance between the positive and negative samples. The experimental results on the DOTA and NWPU VHR-10 data sets verify the effectiveness of our method.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Multi-Stage Feature Fusion Object Detection Method for Remote Sensing Image
    Chen L.
    Zhang F.
    Guo W.
    Huang Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (12): : 3520 - 3528
  • [42] AFANet: A Multibackbone Compatible Feature Fusion Framework for Effective Remote Sensing Object Detection
    Yi, Qingming
    Zheng, Mingfeng
    Shi, Min
    Weng, Jian
    Luo, Aiwen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [43] Adaptively Attentional Feature Fusion Oriented to Multiscale Object Detection in Remote Sensing Images
    Zhao, Wenqing
    Kang, Yijin
    Chen, Hao
    Zhao, Zhenhuan
    Zhao, Zhenbing
    Zhai, Yongjie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [44] Adaptive multimodal feature fusion with frequency domain gate for remote sensing object detection
    Sun, Xu
    Yu, Yinhui
    Cheng, Qing
    REMOTE SENSING LETTERS, 2024, 15 (02) : 133 - 144
  • [45] Multiscale object detection in remote sensing image by combining data fusion and feature selection
    Qin, Dengda
    Wan, Li
    He, Peien
    Zhang, Yi
    Guo, Ya
    Chen, Jie
    National Remote Sensing Bulletin, 2022, 26 (08) : 1662 - 1673
  • [46] SGMFNet: a remote sensing image object detection network based on spatial global attention and multi-scale feature fusion
    Gong, Xiaolin
    Liu, Daqing
    REMOTE SENSING LETTERS, 2024, 15 (05) : 466 - 477
  • [47] Weighted feature fusion and attention mechanism for object detection
    Cheng, Yanhao
    Liu, Weibin
    Xing, Weiwei
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (02)
  • [48] Feature Enhancement SSD for Object Detection
    Tan H.
    Li S.
    Liu B.
    Liu X.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (04): : 573 - 579
  • [49] YOLOv3 Object Detection Algorithm with Feature Pyramid Attention for Remote Sensing Images
    Cheng, Zhe
    Lv, Jingguo
    Wu, Anqi
    Qu, Ningning
    SENSORS AND MATERIALS, 2020, 32 (12) : 4537 - 4558
  • [50] Few-shot Object Detection with Feature Attention Highlight Module in Remote Sensing Images
    Xiao, Zixuan
    Zhong, Ping
    Quan, Yuan
    Yin, Xuping
    Xue, Wei
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584