Swellable polymer films containing Au nanoparticles for point-of-care therapeutic drug monitoring using surface-enhanced Raman spectroscopy

被引:18
|
作者
Lee, Wendy W. Y. [1 ]
McCoy, Colin P. [2 ]
Donnelly, Ryan F. [2 ]
Bell, Steven E. J. [1 ]
机构
[1] Queens Univ Belfast, Sch Chem & Chem Engn, David Keir Bldg, Belfast BT9 5AG, Antrim, North Ireland
[2] Ctr Med Biol, Sch Pharm, Belfast BT9 7BL, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
Surface-enhanced Raman spectroscopy; Metal nanoparticles; Polymer; Hydroxyethylcellulose; Phenytoin; Therapeutic drug monitoring; AG NANOPARTICLES; SERS; SILVER; SCATTERING; PHENYTOIN; SENSOR; GOLD; HPLC;
D O I
10.1016/j.aca.2016.01.023
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Large (10 x 10 cm) sheets of surface-enhanced Raman spectroscopy (SERS) active polymer have been prepared by stabilising metal nanoparticle aggregates within dry hydroxyethylcellulose (HEC) films. In these films the aggregates are protected by the polymer matrix during storage but in use they are released when aqueous analyte droplets cause the films to swell to their gel form. The fact that these "Poly-SERS" films can be prepared in bulk but then cut to size and stored in air before use means that they provide a cost effective and convenient method for routine SERS analysis. Here we have tested both Ag and Au Poly-SERS films for use in point-of-care monitoring of therapeutic drugs, using phenytoin as the test compound. Phenytoin in water could readily be detected using Ag Poly-SERS films but dissolving the compound in phosphate buffered saline (PBS) to mimic body fluid samples caused loss of the drug signal due to competition for metal surface sites from Cl- ions in the buffer solution. However, with Au Poly-SERS films there was no detectable interference from Cl- and these materials allowed phenytoin to be detected at 1.8 mg L-1, even in PBS. The target range of detection of phenytoin in therapeutic drug monitoring is 10-20 mg L-1. With the Au Poly-SERS films, the absolute signal generated by a given concentration of phenytoin was lower for the films than for the parent colloid but the SERS signals were still high enough to be used for therapeutic monitoring, so the cost in sensitivity for moving from simple aqueous colloids to films is not so large that it outweighs the advantages which the films bring for practical applications, in particular their ease of use and long shelf life. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 116
页数:6
相关论文
共 50 条
  • [31] Point-of-Care Diagnosis of Urinary Tract Infection (UTI) Using Surface Enhanced Raman Spectroscopy (SERS)
    Hadjigeorgiou, Katerina
    Kastanos, Evdokia
    Kyriakides, Alexandros
    Pitris, Costas
    IEEE 12TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS & BIOENGINEERING, 2012, : 333 - 337
  • [32] Preparation of magnetic Fe oxide core/Au shell nanoparticles and their surface-enhanced Raman spectroscopy
    Bao Fang
    Yao Jian-Lin
    Gu Ren-Ao
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2008, 29 (08): : 1552 - 1554
  • [33] Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS)
    Sun, Xin
    Wang, Nan
    Li, Hao
    APPLIED SURFACE SCIENCE, 2013, 284 : 549 - 555
  • [34] Blood surface-enhanced Raman spectroscopy based on Ag and Au nanoparticles for nasopharyngeal cancer detection
    Lin, Duo
    Ge, Xiaosong
    Lin, Xueliang
    Chen, Guannan
    Chen, Rong
    LASER PHYSICS, 2016, 26 (05)
  • [35] Preparation of magnetic Fe oxide core/Au shell nanoparticles and their surface-enhanced raman spectroscopy
    Bao, Fang
    Yao, Jian-Lin
    Gu, Ren-Ao
    Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities, 2008, 29 (08): : 1552 - 1554
  • [36] High density Ag nanobranches decorated with sputtered Au nanoparticles for surface-enhanced Raman spectroscopy
    Kim, Yong-Tae
    Schilling, Joerg
    Schweizer, Stefan L.
    Wehrspohn, Ralf B.
    APPLIED SURFACE SCIENCE, 2017, 410 : 525 - 529
  • [37] Surface-enhanced Raman Spectroscopy in single living cells using gold nanoparticles
    Kneipp, K
    Haka, AS
    Kneipp, H
    Badizadegan, K
    Yoshizawa, N
    Boone, C
    Shafer-Peltier, KE
    Motz, JT
    Dasari, RR
    Feld, MS
    APPLIED SPECTROSCOPY, 2002, 56 (02) : 150 - 154
  • [38] A Surface-Enhanced Raman Spectral Library of Important Drugs Associated With Point-of-Care and Field Applications
    Farquharson, Stuart
    Brouillette, Carl
    Smith, Wayne
    Shende, Chetan
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [39] Surface-enhanced Raman spectroscopy using uncoated gold nanoparticles for bacteria discrimination
    Akanny, Elie
    Bonhomme, Anne
    Commun, Carine
    Doleans-Jordheim, Anne
    Farre, Carole
    Bessueille, Francois
    Bourgeois, Sandrine
    Bordes, Claire
    JOURNAL OF RAMAN SPECTROSCOPY, 2020, 51 (04) : 619 - 629
  • [40] Surface-enhanced Raman spectroscopy using silver nanoparticles on a precoated microscope slide
    Li, Ying-Sing
    Cheng, Jingcai
    Chung, King-Thom
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2008, 69 (02) : 524 - 527