Multiplexed protein-DNA cross-linking: Scrunching in transcription start site selection

被引:46
|
作者
Winkelman, Jared T. [1 ,2 ,3 ,4 ]
Vvedenskaya, Irina O. [1 ,3 ]
Zhang, Yuanchao [1 ]
Zhang, Yu [2 ,3 ]
Bird, Jeremy G. [1 ,2 ,3 ]
Taylor, Deanne M. [1 ,5 ,6 ,7 ]
Gourse, Richard L. [4 ]
Ebright, Richard H. [2 ,3 ]
Nickels, Bryce E. [1 ,3 ]
机构
[1] Rutgers State Univ, Dept Genet, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Waksman Inst, Piscataway, NJ 08854 USA
[4] Univ Wisconsin, Dept Bacteriol, Madison, WI 53705 USA
[5] Childrens Hosp Philadelphia, Dept Biomed & Hlth Informat, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Dept Pediat, Philadelphia, PA 19104 USA
[7] Rutgers Robert Wood Johnson Med Sch, Dept Obstet Gynecol & Reprod Sci, New Brunswick, NJ 08901 USA
关键词
RNA-POLYMERASE; ESCHERICHIA-COLI; AMINO-ACID; PROMOTER; INITIATION; SEQUENCE; RECOGNITION; ELEMENT;
D O I
10.1126/science.aad6881
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In bacterial transcription initiation, RNA polymerase (RNAP) selects a transcription start site (TSS) at variable distances downstream of core promoter elements. Using next-generation sequencing and unnatural amino acid-mediated protein-DNA cross-linking, we have determined, for a library of 410 promoter sequences, the TSS, the RNAP leading-edge position, and the RNAP trailing-edge position. We find that a promoter element upstream of the TSS, the "discriminator," participates in TSS selection, and that, as the TSS changes, the RNAP leading-edge position changes, but the RNAP trailing-edge position does not change. Changes in the RNAP leading-edge position, but not the RNAP trailing-edge position, are a defining hallmark of the "DNA scrunching" that occurs concurrent with RNA synthesis in initial transcription. We propose that TSS selection involves DNA scrunching prior to RNA synthesis.
引用
收藏
页码:1090 / 1093
页数:4
相关论文
共 50 条
  • [31] DNA-protein cross-linking by antitumor DNA alkylating drugs
    Michaelson-Richie, Erin
    Loeber, Rachel
    Campbell, Colin
    Tretyakova, Natalia
    CANCER RESEARCH, 2009, 69
  • [32] Reversible DNA-Protein Cross-Linking at Epigenetic DNA Marks
    Ji, Shaofei
    Shao, Hongzhao
    Han, Qiyuan
    Seiler, Christopher L.
    Tretyakova, Natalia Y.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (45) : 14130 - 14134
  • [33] DNA-protein cross-linking: Model systems for pyrimidine-aromatic amino acid cross-linking
    Sun, GX
    Fecko, CJ
    Nicewonger, RB
    Webb, WW
    Begley, TP
    ORGANIC LETTERS, 2006, 8 (04) : 681 - 683
  • [34] Reversible DNA-protein cross-linking at epigenetic DNA marks
    Ji, Shaofei
    Tretyakova, Natalia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [35] DNA-DNA and DNA-protein cross-linking by diepoxybutane.
    Tretyakova, N
    CHEMICAL RESEARCH IN TOXICOLOGY, 2004, 17 (12) : 1758 - 1758
  • [36] Structural aspects of protein-DNA interactions as revealed by conversion of the interacting protein into a sequence-specific cross-linking agent or a chemical nuclease
    Bastia, D
    STRUCTURE, 1996, 4 (06) : 661 - 664
  • [37] X-RAY MEDIATED CROSS-LINKING OF PROTEIN AND DNA
    MINSKY, BD
    BRAUN, A
    RADIATION RESEARCH, 1977, 70 (03) : 679 - 679
  • [38] QUANTIFICATION OF DNA-PROTEIN INTERACTION BY UV CROSS-LINKING
    MOLNAR, G
    OLEARY, N
    PARDEE, AB
    BRADLEY, DW
    NUCLEIC ACIDS RESEARCH, 1995, 23 (16) : 3318 - 3326
  • [39] Subtypes of associated protein-DNA (Transcription Factor-Transcription Factor Binding Site) patterns
    Chan, Tak-Ming
    Leung, Kwong-Sak
    Lee, Kin-Hong
    Wong, Man-Hon
    Lau, Terrence Chi-Kong
    Tsui, Stephen Kwok-Wing
    NUCLEIC ACIDS RESEARCH, 2012, 40 (19) : 9392 - 9403
  • [40] PHOTODYNAMIC PROTEIN CROSS-LINKING
    VERWEIJ, H
    DUBBELMAN, TMAR
    VANSTEVENINCK, J
    BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 647 (01) : 87 - 94