Utilization of CO2-Cured Waste Cement Powder to Enhance the Properties and Microstructure of Cement Mortar and Paste

被引:2
|
作者
Jiang, Lei [1 ]
Wu, Qian [1 ]
Gu, Qifan [1 ]
Zhong, Dongqing [1 ]
Wang, Luming [1 ]
机构
[1] Yancheng Inst Technol, Sch Mat Sci & Engn, Yancheng 224002, Peoples R China
关键词
CO2; curing; Waste cement powder (WCP); Calcium carbonate; Compressive strength; Microstructure; REACTIVE MAGNESIA; CONCRETE; AGGREGATE;
D O I
10.1061/(ASCE)MT.1943-5533.0004416
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Utilization of waste concrete has been become an urgent requirement for sustainable development due to the huge amounts of construction waste. The most promising strategy is to treat construction wastes by CO2 curing. This study investigates the properties and microstructure of cement mortar with CO2-cured waste cement powder (CWCP). The results showed the CWCP showed a rapid pH value decline from 12.9 to 10.2 within 12 h, the value was maintained at 8.4, and showed no obvious change after carbonation after 72 h. The CO2 uptake of CWCP increased rapidly in the first 2 h and reached 26.4% at 168 h. The C-S-H, Ca(OH)(2), and traces of ettringite in waste cement powder (WCP) were transformed to calcium carbonate and silica gel after carbonation treatment. The flowability of cement mortar decreased with addition of WCP and CWCP content. The compressive strength of cement mortar with WCP decreased with replacement of cement beyond 10%, and incorporation of below 20% CWCP increased the compressive strength of mortar. In addition, the replacement of cement with 10%-20% CWCP or 10% WCP showed a lower water absorption compared with control cement mortar. The presence of calcium carbonate in the CWCP resulted in the formation of monocarbonate, which stabilized the ettringite and led to a denser microstructure compared with control cement paste. (C) 2022 American Society of Civil Engineers.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] PROPERTIES OF MORTAR CONTAINING CERAMIC POWDER WASTE AS CEMENT REPLACEMENT
    Samadi, Mostafa
    Hussin, Mohd Warid
    Lee, Han Seung
    Sam, Abdul Rahman Mohd
    Ismail, Mohamed A.
    Lim, Nor Hasanah Abdul Shukor
    Ariffin, Nur Farhayu
    Khalid, Nur Hafizah A.
    JURNAL TEKNOLOGI, 2015, 77 (12): : 93 - 97
  • [22] Thermal properties of cement mortar modified with waste glass powder
    Sharifi, Yasser
    Rezaei, Shahab
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (10)
  • [23] Influence of waste marble powder as a replacement of cement on the properties of mortar
    Yamanel, Kenan
    Durak, Ugur
    Ilkentapar, Serhan
    Atabey, Ismail Isa
    Karahan, Okan
    Atis, Cengiz Duran
    REVISTA DE LA CONSTRUCCION, 2019, 18 (02): : 290 - 300
  • [24] Thermophysical Properties of Cement Mortar Containing Waste Glass Powder
    Nasry, Oumaima
    Samaouali, Abderrahim
    Belarouf, Sara
    Moufakkir, Abdelkrim
    Sghiouri El Idrissi, Hanane
    Soulami, Houda
    El Rhaffari, Younes
    Hraita, Mohamed
    Fertahi, Saif Ed Din
    Hafidi-Alaoui, Adil
    CRYSTALS, 2021, 11 (05):
  • [25] THE EFFECT OF GROUND GLASS WASTE ON PROPERTIES OF HARDENED CEMENT PASTE AND MORTAR
    Barkauskas, Kestutis
    Nagrockiene, Dzigita
    Norkus, Arnoldas
    CERAMICS-SILIKATY, 2020, 64 (04) : 478 - 487
  • [26] Effects of Quartz Powder on the Microstructure and Key Properties of Cement Paste
    Lin, Run-Sheng
    Wang, Xiao-Yong
    Zhang, Gui-Yu
    SUSTAINABILITY, 2018, 10 (10)
  • [27] Thermal and microstructure properties of cement mortar containing ceramic waste powder as alternative cementitious materials
    Mohit, Mehdi
    Sharifi, Yasser
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 223 : 643 - 656
  • [28] Utilization of pumice powder and glass microspheres in cement mortar using paste replacement methodology
    Kabay, Nihat
    Miyan, Nausad
    Ozkan, Hakan
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 282 (282)
  • [29] Reusing Waste Concrete Recycled Powder in Mortar: Paste Substitution versus Cement Substitution
    Li, Leo Gu
    Lu, Ze-Cheng
    Ng, Pui-Lam
    Chen, Zhong-Ping
    Deng, Xiaowei
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2024, 36 (05)
  • [30] Durability characteristics of CO2-cured cellulose fiber reinforced cement composites
    Soroushian, Parviz
    Won, Jong-Pil
    Hassan, Maan
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 34 : 44 - 53