Nodal solutions for noncoercive nonlinear Neumann problems with indefinite potential

被引:12
|
作者
He, Tieshan [1 ]
Huang, Yehui [1 ]
Liang, Kaihao [1 ]
Lei, Youfa [1 ]
机构
[1] Zhongkai Univ Agr & Engn, Sch Computat Sci, Guangzhou 510225, Guangdong, Peoples R China
关键词
Nonhomogeneous differential operator; Nodal solution; Variational approach; Gradient flow; Superlinear reaction; NONHOMOGENEOUS DIFFERENTIAL OPERATOR; ELLIPTIC-EQUATIONS; P-LAPLACIAN; MULTIPLE SOLUTIONS; NONTRIVIAL SOLUTIONS;
D O I
10.1016/j.aml.2017.03.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator and an indefinite potential. Using variational methods together with flow invariance arguments, we show that the problem has at least one nodal solution. The result presented in this paper gives an answer to the open question raised by Papageorgiou and Radulescu (2016). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [41] Global Multiplicity of Positive Solutions for Nonlinear Robin Problems with an Indefinite Potential Term
    Eylem Öztürk
    Nikolaos S. Papageorgiou
    Results in Mathematics, 2024, 79
  • [42] Entropy solutions for some nonlinear and noncoercive unilateral elliptic problems
    Youssef Akdim
    Mohammed Belayachi
    Hassane Hjiaj
    Mounir Mekkour
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1373 - 1392
  • [43] Nodal solutions for nonlinear eigenvalue problems
    Ma, RY
    Thompson, B
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (05) : 707 - 718
  • [44] Unbounded components of positive radial solutions for semilinear indefinite Neumann problems
    Ma, Ruyun
    Yang, Wei
    Shi, Xuanrong
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025,
  • [45] Nonlinear singular problems with indefinite potential term
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (04) : 2237 - 2262
  • [46] Nonlinear singular problems with indefinite potential term
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    Analysis and Mathematical Physics, 2019, 9 : 2237 - 2262
  • [47] Nodal Clustered Solutions for Some Singularly Perturbed Neumann Problems
    D'Aprile, Teresa
    Pistoia, Angela
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (08) : 1355 - 1401
  • [48] Existence and nonexistence of solutions of nonlinear Neumann problems
    Pohozaev, SI
    Tesei, A
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) : 119 - 133
  • [49] EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR NEUMANN PROBLEMS
    BANDLE, C
    POZIO, MA
    TESEI, A
    MATHEMATISCHE ZEITSCHRIFT, 1988, 199 (02) : 257 - 278
  • [50] POSITIVE SOLUTIONS FOR NONLINEAR NEUMANN EIGENVALUE PROBLEMS
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (2-3): : 235 - 250