Positive Linear Isometries in Symmetric Operator Spaces

被引:4
|
作者
Sukochev, F. [1 ]
Veksler, A. [2 ]
机构
[1] Univ New South Wales, Kensington, NSW 2052, Australia
[2] Uzbek Acad Sci, Inst Math, Tashkent, Uzbekistan
关键词
Positive isometries; Symmetric spaces; Strictly K-monotone norm; KADEC-KLEE PROPERTIES; PROPERTY;
D O I
10.1007/s00020-018-2483-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, tau) and (N, nu) be semifinite von Neumann algebras equipped with faithful normal semifinite traces and let E(M, tau) and F(N, nu) be symmetric operator spaces associated with these algebras. We provide a sufficient condition on the norm of the space F(N, nu) guaranteeing that every positive linear isometry T : E(M, tau) ->(into) F(N, nu) is "disjointness preserving" in the sense that T(x)T(y) = 0 provided that xy = 0, 0 <= x, y is an element of E(M, tau). This fact, in turn, allows us to describe the general form of such isometries.
引用
收藏
页数:15
相关论文
共 50 条