Positive Linear Isometries in Symmetric Operator Spaces

被引:4
|
作者
Sukochev, F. [1 ]
Veksler, A. [2 ]
机构
[1] Univ New South Wales, Kensington, NSW 2052, Australia
[2] Uzbek Acad Sci, Inst Math, Tashkent, Uzbekistan
关键词
Positive isometries; Symmetric spaces; Strictly K-monotone norm; KADEC-KLEE PROPERTIES; PROPERTY;
D O I
10.1007/s00020-018-2483-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, tau) and (N, nu) be semifinite von Neumann algebras equipped with faithful normal semifinite traces and let E(M, tau) and F(N, nu) be symmetric operator spaces associated with these algebras. We provide a sufficient condition on the norm of the space F(N, nu) guaranteeing that every positive linear isometry T : E(M, tau) ->(into) F(N, nu) is "disjointness preserving" in the sense that T(x)T(y) = 0 provided that xy = 0, 0 <= x, y is an element of E(M, tau). This fact, in turn, allows us to describe the general form of such isometries.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Positive Linear Isometries in Symmetric Operator Spaces
    F. Sukochev
    A. Veksler
    Integral Equations and Operator Theory, 2018, 90
  • [2] Hermitian operators and isometries on symmetric operator spaces
    Huang, Jinghao
    Sukochev, Fedor
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (09) : 3287 - 3325
  • [3] Isometries of spaces of normalized positive operators under the operator norm
    Nagy, Gergo
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (1-2): : 243 - 254
  • [4] Isometries of symmetric operator spaces associated with AFD factors of type II and symmetric vector-valued spaces
    Sukochev, FA
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 26 (01) : 102 - 124
  • [5] Isometries of certain operator spaces
    Khalil, R
    Saleh, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) : 1473 - 1481
  • [6] Isometries of Hermitian Symmetric Spaces
    Eschenburg, Jost-Hinrich
    Quast, Peter
    Tanaka, Makiko Sumi
    JOURNAL OF LIE THEORY, 2013, 23 (01) : 113 - 118
  • [7] ISOMETRIES OF EXTRINSIC SYMMETRIC SPACES
    Eschenburg, J-H
    Quast, P.
    Tanaka, M. S.
    ASIAN JOURNAL OF MATHEMATICS, 2019, 23 (03) : 439 - 454
  • [8] Isometries on Noncommutative Symmetric Spaces
    F. A. Sukochev
    J. Huang
    Doklady Mathematics, 2021, 103 : 54 - 56
  • [9] Isometries on Noncommutative Symmetric Spaces
    Sukochev, F. A.
    Huang, J.
    DOKLADY MATHEMATICS, 2021, 103 (01) : 54 - 56
  • [10] On linear isometries and ε-isometries between Banach spaces
    Zhou, Yu
    Zhang, Zihou
    Liu, Chunyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) : 754 - 764