A new elementary algorithm for proving q-hypergeometric identities

被引:1
|
作者
Zhang, BY [1 ]
机构
[1] Nankai Univ, Minist Educ, Key lab Pure Math & Combinator, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
q-hypergeometric identities; computer proofs; elimination;
D O I
10.1016/S0747-7171(02)00136-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a fast elementary algorithm to get a small number n(1) for an admissible q-proper-hypergeometric identity [GRAPHICS] such that we can prove the identity by checking its correctness for n (n(0) less than or equal to n less than or equal to n(1)). For example, we get n(1) = 191 for the q-Vandermonde-Chu identity, n(1) = 70 for a finite version of Jacobi's triple product identity and n(1) = 209 for an identity due to L.J. Rogers. (C) 2003 Published by Elsevier Science Ltd.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 50 条
  • [31] ON MONOTONICITY OF RATIOS OF SOME q-HYPERGEOMETRIC FUNCTIONS
    Mehrez, Khaled
    Sitnik, Sergei M.
    MATEMATICKI VESNIK, 2016, 68 (03): : 225 - 231
  • [32] RECURSION FORMULAS FOR q-HYPERGEOMETRIC AND q-APPELL SERIES
    Sahai, Vivek
    Verma, Ashish
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01): : 207 - 236
  • [33] On Solutions of the q-Hypergeometric Equation with qN = 1
    Yoshihiro Takeyama
    The Ramanujan Journal, 2002, 6 : 369 - 378
  • [34] SOME ASYMPTOTIC FORMULAS FOR Q-HYPERGEOMETRIC SERIES
    MCINTOSH, RJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 120 - 136
  • [35] Convergence Aspects for Generalizations of q-Hypergeometric Functions
    Ernst, Thomas
    AXIOMS, 2015, 4 (02): : 134 - 155
  • [36] A GENERALIZED OPERATOR INVOLVING THE q-HYPERGEOMETRIC FUNCTION
    Mohammed, Aabed
    Darus, Maslina
    MATEMATICKI VESNIK, 2013, 65 (04): : 454 - 465
  • [37] On the values of certain q-hypergeometric series II
    Amou, M
    Katsurada, M
    Väänänen, K
    ANALYTIC NUMBER THEORY, 2002, 6 : 17 - 25
  • [38] On Solutions of the q-hypergeometric equation with qN=1
    Takeyama, Y
    RAMANUJAN JOURNAL, 2002, 6 (03): : 369 - 378
  • [39] Algorithms for q-hypergeometric summation in computer algebra
    Böing, H
    Koepf, W
    JOURNAL OF SYMBOLIC COMPUTATION, 1999, 28 (06) : 777 - 799
  • [40] On Some Special Families of q-hypergeometric Maass Forms
    Bringmann, Kathrin
    Lovejoy, Jeremy
    Rolen, Larry
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (18) : 5537 - 5561