REPRESENTATIONS OF THE n-DIMENSIONAL QUANTUM TORUS

被引:1
|
作者
Gupta, Ashish [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Math, Bhopal Bypass Rd, Bhopal 462066, India
关键词
Finite length modules; Gelfand-Kirillov dimension; Quantum torus; Simple modules; CROSSED-PRODUCTS; MODULES;
D O I
10.1080/00927872.2015.1065876
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The n-dimensional quantum torus O-q((F-x)(n)) is defined as the associative F-algebra generated by x(1), ... , x(n) together with their inverses satisfying the relations x(i)x(j) = q(ij)x(j)x(i), where q = (q(ij)). We show that the modules that are finitely generated over certain commutative sub-algebras B are B-torsion-free and have finite length. We determine the Gelfand-Kirillov dimensions of simple modules in the case when K.dim(O-q((F-x)(n))) = n - 1, where K.dim stands for the Krull dimension. In this case, if M is a simple O-q((F-x)(n))-module, then GK-dim(M) = 1 or GK-dim(M) >= GK-dim(O-q((F-x)(n)) - GK-dim(Z(O-q((F-x)(n)))) - 1, where Z(C) stands for the center of an algebra C. We also show that there always exists a simple F * A-module satisfying the above inequality.
引用
收藏
页码:3077 / 3087
页数:11
相关论文
共 50 条
  • [21] Conditional fractional matching preclusion of n-dimensional torus networks
    Hu, Xiaomin
    Tian, Yingzhi
    Meng, Jixiang
    Yang, Weihua
    DISCRETE APPLIED MATHEMATICS, 2021, 293 : 157 - 165
  • [22] Panconnectivity of n-dimensional torus networks with faulty vertices and edges
    Yuan, Jun
    Liu, Aixia
    Wu, Hongmei
    Li, Jing
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (03) : 404 - 423
  • [23] n-dimensional FLRW quantum cosmology
    Letelier, Patricio S.
    Pitelli, Joao Paulo M.
    PHYSICAL REVIEW D, 2010, 82 (10):
  • [24] Slant Toeplitz operators on the Lebesgue space of n-dimensional torus
    Datt, Gopal
    Pandey, Shesh Kumar
    HOKKAIDO MATHEMATICAL JOURNAL, 2020, 49 (03) : 363 - 389
  • [25] STRICT CONVEXITY FOR VARIATIONAL-PROBLEMS ON AN N-DIMENSIONAL TORUS
    SENN, W
    MANUSCRIPTA MATHEMATICA, 1991, 71 (01) : 45 - 65
  • [26] (Lp–Lq)-boundedness of pseudodifferential operators on the n-dimensional torus
    D. B. Bazarkhanov
    Mathematical Notes, 2017, 102 : 872 - 877
  • [27] Thermodynamics of N-dimensional quantum walks
    Romanelli, Alejandro
    Donangelo, Raul
    Portugal, Renato
    Marquezino, Franklin de Lima
    PHYSICAL REVIEW A, 2014, 90 (02)
  • [28] DISCRETE REPRESENTATIONS OF THE N-DIMENSIONAL WAVE-EQUATION
    HRGOVCIC, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05): : 1329 - 1350
  • [29] LIFTING N-DIMENSIONAL GALOIS REPRESENTATIONS TO CHARACTERISTIC ZERO
    Manoharmayum, Jayanta
    GLASGOW MATHEMATICAL JOURNAL, 2019, 61 (01) : 115 - 150