The wall-crossing formula and Lagrangian mutations

被引:20
|
作者
Pascaleff, James [1 ]
Tonkonog, Dmitry [2 ,3 ]
机构
[1] Univ Illinois, 1409 W Green St, Urbana, IL 61081 USA
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
[3] Uppsala Univ, S-75106 Uppsala, Sweden
基金
美国国家科学基金会;
关键词
Landau-Ginzburg potential; Holomorphic disk; Lagrangian torus; Wall-crossing; Cluster transformation; Mutation; TORUS FIBERS;
D O I
10.1016/j.aim.2019.106850
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general form of the wall-crossing formula which relates the disk potentials of monotone Lagrangian submanifolds with their Floer-theoretic behaviour away from a Donaldson divisor. We define geometric operations called mutations of Lagrangian tori in del Pezzo surfaces and in tonic Fano varieties of higher dimension, and study the corresponding wall-crossing formulas that compute the disk potential of a mutated torus from that of the original one. In the case of del Pezzo surfaces, this justifies the connection between Vianna's tori and the theory of mutations of Landau-Ginzburg seeds. In higher dimension, this provides new Lagrangian tori in tonic Fanos corresponding to different chambers of the mirror variety, including ones which are conjecturally separated by infinitely many walls from the chamber containing the standard tonic fibre. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:67
相关论文
共 50 条
  • [31] Analyticity and resurgence in wall-crossing formulas
    Kontsevich, Maxim
    Soibelman, Yan
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (02)
  • [32] Equivalence of three wall-crossing formulae
    Sen, Ashoke
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2012, 6 (03) : 601 - 659
  • [33] Analyticity and resurgence in wall-crossing formulas
    Maxim Kontsevich
    Yan Soibelman
    Letters in Mathematical Physics, 2022, 112
  • [34] Combinatorial wall-crossing and the Mullineux involution
    Dimakis, Panagiotis
    Yue, Guangyi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (01) : 49 - 72
  • [35] Instanton Counting and Wall-Crossing for Orbifold Quivers
    Michele Cirafici
    Annamaria Sinkovics
    Richard J. Szabo
    Annales Henri Poincaré, 2013, 14 : 1001 - 1041
  • [36] Perverse coherent sheaves on blowup, III: Blow-up formula from wall-crossing
    Nakajima, Hiraku
    Yoshioka, Kota
    KYOTO JOURNAL OF MATHEMATICS, 2011, 51 (02) : 263 - 335
  • [37] Donaldson wall-crossing formulas via topology
    Leness, TG
    FORUM MATHEMATICUM, 1999, 11 (04) : 417 - 457
  • [38] A geometric derivation of the dyon wall-crossing group
    Cheng, Miranda C. N.
    Hollands, Lotte
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04):
  • [39] Wall-crossing, Hitchin systems, and the WKB approximation
    Gaiotto, Davide
    Moore, Gregory W.
    Neitzke, Andrew
    ADVANCES IN MATHEMATICS, 2013, 234 : 239 - 403
  • [40] Abelian Quiver Invariants and Marginal Wall-Crossing
    Mozgovoy, Sergey
    Reineke, Markus
    LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (05) : 495 - 525