Invariant Algebraic Curves and Hyperelliptic Limit Cycles of Lienard Systems

被引:3
|
作者
Qian, Xinjie [1 ]
Shen, Yang [2 ]
Yang, Jiazhong [2 ]
机构
[1] Jinling Inst Technol, Sch Sci, Nanjing 211169, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
16th Hilbert problem; Lienard systems; Invariant algebraic curves; Hyperelliptic limit cycles;
D O I
10.1007/s12346-021-00484-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we deal with the Lienard system (x) over dot = y, (y) over dot = - f(m)(x) y - g(n)(x), where f(m)(x) and g(n)(x) are real polynomials of degree m and n, respectively. We call this system the Lienard system of type (m, n). For this system, we proved that if m + 1 = <= n <= [4m+2/3], then the maximum number of hyperelliptic limit cycles is n - m - 1, and this bound is sharp. This result indicates that the Lienard system of type (m, m+1) has no hyperelliptic limit cycles. Secondly, we present examples of irreducible algebraic curves of arbitrary high degree for Lienard systems of type (m, 2m + 1). Moreover, these systems have a rational first integral. Finally, we proved that the Lienard system of type (2, 5) has at most one hyperelliptic limit cycle, and this bound is sharp.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Limit cycles in two types of symmetric Lienard systems
    Jiang, J.
    Han, M.
    Yu, P.
    Lynch, S.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (06): : 2169 - 2174
  • [42] Limit Cycles of a Class of Piecewise Smooth Lienard Systems
    Sheng, Lijuan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (01):
  • [43] On the existence and uniqueness of limit cycles for generalized Lienard systems
    Xiao, Dongmei
    Zhang, Zhifen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 299 - 309
  • [44] Comment on "Lienard systems, limit cycles, and Melnikov theory"
    Giacomini, H
    Neukirch, S
    PHYSICAL REVIEW E, 1999, 59 (02): : 2483 - 2484
  • [45] On the limit cycles for a class of generalized Lienard differential systems
    Diab, Zouhair
    Guirao, Juan L. G.
    Vera, Juan A.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2022, 37 (01): : 1 - 8
  • [46] On the Number of Hyperelliptic Limit Cycles of Liénard Systems
    Xinjie Qian
    Jiazhong Yang
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [47] ON THE NUMBER OF LIMIT CYCLES FOR A GENERALIZATION OF LIENARD POLYNOMIAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Valls, Claudia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03):
  • [48] Bifurcation of Limit Cycles in Small Perturbation of a Class of Lienard Systems
    Sun, Xianbo
    Xi, Hongjian
    Zangeneh, Hamid R. Z.
    Kazemi, Rasool
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (01):
  • [49] Bifurcation of limit cycles and separatrix loops in singular Lienard systems
    Han, MA
    Bi, P
    Xiao, DM
    CHAOS SOLITONS & FRACTALS, 2004, 20 (03) : 529 - 546
  • [50] On the uniqueness of limit cycles in discontinuous Lienard-type systems
    Jiang, Fangfang
    Sun, Jitao
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2014, (71) : 1 - 12