Subspace Learning Network: An Efficient ConvNet for PolSAR Image Classification

被引:3
|
作者
Guo, Jun [1 ]
Wang, Ling [1 ]
Nu, Daiyin [1 ]
Hu, Chang-Yu [1 ]
Xue, Chen-Yan [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Radar Imaging & Microwave Photon, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); polarimetric feature; polarimetric synthetic aperture radar (PolSAR) image classification; subspace learning; NEURAL-NETWORK; LAND-COVER; SAR; DECOMPOSITION;
D O I
10.1109/LGRS.2019.2913204
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Land cover classification is an important part of the polarimetric synthetic aperture radar (PolSAR) image interpretation. The convolutional neural network (CNN) has been utilized to improve the classification accuracy recently. However, how to efficiently train the classification model with limited training samples while keeping the generalization performance is still a challenge. In this letter, we devise a subspace learning network (SSLNet) for PolSAR image classification, which can be trained more efficiently. First, a third-order polarimetric feature tensor is constructed using five-target decompositions to make full use of the prior knowledge. The tensor is then fed into a two-layer CNN in which the principal component analysis (PCA) is employed to learn the convolutional filters. Finally, the output features of the network are obtained by binary hashing and block-wise histograms, followed by the nearest neighbor (NN) classifier to complete the classification. Due to the simple learning strategy, the proposed SSLNet can be easily designed and efficiently trained. Experimental results on benchmark PolSAR data reveal that the SSLNet can achieve higher classification accuracy with limited training samples than the conventional CNN method.
引用
收藏
页码:1849 / 1853
页数:5
相关论文
共 50 条
  • [21] PolSAR-SSN: An End-to-End Superpixel Sampling Network for PolSAR Image Classification
    Wang, Lei
    Hong, Hanyu
    Zhang, Yaozong
    Wu, Jinmeng
    Ma, Lei
    Zhu, Yin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] Variational Learning of Mixture Wishart Model for PolSAR Image Classification
    Wu, Qian
    Hou, Biao
    Wen, Zaidao
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01): : 141 - 154
  • [23] Adaptive Fuzzy Learning Superpixel Representation for PolSAR Image Classification
    Guo, Yuwei
    Jiao, Licheng
    Qu, Rong
    Sun, Zhuangzhuang
    Wang, Shuang
    Wang, Shuo
    Liu, Fang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] Optimized Wishart Network for an Efficient Classification of Multifrequency PolSAR Data
    Gadhiya, Tushar
    Roy, Anil K.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (11) : 1720 - 1724
  • [25] Robust Latent Subspace Learning for Image Classification
    Fang, Xiaozhao
    Teng, Shaohua
    Lai, Zhihui
    He, Zhaoshui
    Xie, Shengli
    Wong, Wai Keung
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (06) : 2502 - 2515
  • [26] Adaptive Fuzzy Learning Superpixel Representation for PolSAR Image Classification
    Guo, Yuwei
    Jiao, Licheng
    Qu, Rong
    Sun, Zhuangzhuang
    Wang, Shuang
    Wang, Shuo
    Liu, Fang
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [27] Image Classification by Selective Regularized Subspace Learning
    Luo, Changzhi
    Ni, Bingbing
    Yan, Shuicheng
    Wang, Meng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (01) : 40 - 50
  • [28] Learning an Orthogonal and Smooth Subspace for Image Classification
    Hou, Chenping
    Nie, Feiping
    Zhang, Changshui
    Wu, Yi
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (04) : 303 - 306
  • [29] A REVIEW OF PolSAR IMAGE CLASSIFICATION: FROM POLARIMETRY TO DEEP LEARNING
    Wang, Haipeng
    Xu, Feng
    Jin, Ya-Qiu
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3189 - 3192
  • [30] PolSAR image classification based on polarimetric decomposition and ensemble learning
    Xiao Y.
    Wang B.
    Jiang Q.
    Wen Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (16): : 134 - 141