Hyperlocal Home Location Identification of Twitter Profiles

被引:16
|
作者
Poulston, Adam [1 ]
Stevenson, Mark [1 ]
Bontcheva, Kalina [1 ]
机构
[1] Univ Sheffield, Dept Comp Sci, 211 Portobello, Sheffield S1 4DP, S Yorkshire, England
来源
PROCEEDINGS OF THE 28TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA (HT'17) | 2017年
关键词
User geo-location; home location identification; geographic clustering; data mining;
D O I
10.1145/3078714.3078719
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Knowledge of user's location provides valuable information that can be used to build region-specific models (e.g. language used in a particular region and map-based visualisations of social media posts). Determining a user's home location presents a challenge. Current approaches make use of geo-located tweets or textual cues but are often only able to predict location to a coarse level of granularity (e.g. city level), while many applications require finer-grained (hyperlocal) predictions. A novel approach for hyperlocal home location identification, based on clustering of geo-located tweets, is presented. A gold-standard data set for home location identification is developed by making use of indicative phrases in geo-located tweets. We find that the cluster-based approaches outperform current techniques for hyperlocal location prediction.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 50 条
  • [31] Location detection and disambiguation from twitter messages
    Inkpen, Diana
    Liu, Ji
    Farzindar, Atefeh
    Kazemi, Farzaneh
    Ghazi, Diman
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2017, 49 (02) : 237 - 253
  • [32] Location Prediction Using Sentiments of Twitter Users
    Singh, Ritu
    Toshniwal, Durga
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY (DAWAK 2018), 2018, 11031 : 98 - 108
  • [33] Automatic Event Geo-Location in Twitter
    Acampora, Giovanni
    Anastasio, Paolo
    Risi, Michele
    Tortora, Genoveffa
    Vitiello, Autilia
    IEEE ACCESS, 2020, 8 : 128213 - 128223
  • [34] The incidence of geographical location in the political discussion on Twitter
    Casero-Ripolles, Andreu
    Mico-Sanz, Josep-Lluis
    2017 12TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2017,
  • [35] Location detection and disambiguation from twitter messages
    Diana Inkpen
    Ji Liu
    Atefeh Farzindar
    Farzaneh Kazemi
    Diman Ghazi
    Journal of Intelligent Information Systems, 2017, 49 : 237 - 253
  • [36] Predicting next location of Twitter users for surveillance
    Gunduz, Sedef
    Yavanoglu, Uraz
    Sagiroglu, Seref
    2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 2, 2013, : 267 - 273
  • [37] Inferring tweet location inference for twitter mining
    Kim M.G.
    Kang Y.O.
    Lee J.Y.
    Koh J.H.
    Spatial Information Research, 2016, 24 (04) : 421 - 435
  • [38] Predicting Named Entity Location using Twitter
    Shen, Wei
    Liu, Yinan
    Wang, Jianyong
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 161 - 172
  • [39] Inferring the home locations of Twitter users based on the spatiotemporal clustering of Twitter data
    Lin, Jie
    Cromley, Robert G.
    TRANSACTIONS IN GIS, 2018, 22 (01) : 82 - 97
  • [40] A Systematic Identification of Scientists on Twitter
    Ke, Qing
    Ahn, Yong-Yeol
    Sugimoto, Cassidy R.
    21ST INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY INDICATORS (STI 2016), 2016, : 1160 - 1164